Lieberman Isador H, Hardenbrook Mitchell A, Wang Jeffrey C, Guyer Richard D
Texas Back Institute, Plano, TX, USA.
J Spinal Disord Tech. 2012 Jul;25(5):241-8. doi: 10.1097/BSD.0b013e318218a5ef.
Controlled, cadaveric implantation trial.
To evaluate the effect of a robotic guidance system on screw placement accuracy, amount of radiation exposure, and length of procedure time during percutaneous pedicle screw implantation.
Pedicle screws are associated with low complication rates, and several computer-assisted image guidance systems exist that facilitate accurate screw placement. However, these systems may represent substantial radiation exposure risk to patients and surgeons.
We implanted 234 pedicle screws in 12 cadavers (study group: 15 surgeons, 197 screws, and 10 specimens; control group: 2 surgeons, 37 screws, and 2 specimens). We measured procedure time, fluoroscopy time, and radiation exposure and evaluated screw placement accuracy with computed tomography scans. To evaluate the learning curve, we compared measurements with those of an experienced robotic guidance user through the 2-sample (heteroscedastic), 1-tail t test (P< 0.05).
Relative to control, the study group had fewer screw placement deviations (average, 2.6±0.7 mm vs. 1.1±0.4 mm; P<0.0001), fewer pedicle wall breaches of 4 mm or greater (average, 5.4% vs. 1.5%), lower surgeon radiation exposure (average, 136 mrem vs. 4.2 mrem), lower fluoroscopy time per screw (average, 33.0 s vs. 0.9 s), and shorter procedure time (average, 1.98 h vs. 1.23 h). Use of robotic guidance increased the accuracy of percutaneous pedicle screw placement by 58%, thereby reducing the risk of neurologic injury (as measured by breaches >4 mm), new-user radiation exposure (by 98.2%), and procedure time (by 36%).
The advantages associated with a robotic guidance system may make the surgeon more at ease about offering minimally invasive or percutaneous surgical options to patients and more comfortable about implementing pedicle-based fixation in general. This advanced technology may also allow inclusion of patients with complicated anatomic deformities, who are often excluded from pedicle screw-based surgery options.
对照尸体植入试验。
评估机器人引导系统在经皮椎弓根螺钉植入过程中对螺钉置入准确性、辐射暴露量和手术时间长度的影响。
椎弓根螺钉的并发症发生率较低,并且存在几种计算机辅助图像引导系统有助于准确置入螺钉。然而,这些系统可能会给患者和外科医生带来较大的辐射暴露风险。
我们在12具尸体上植入了234枚椎弓根螺钉(研究组:15名外科医生、197枚螺钉和10个标本;对照组:2名外科医生、37枚螺钉和2个标本)。我们测量了手术时间、透视时间和辐射暴露,并通过计算机断层扫描评估螺钉置入的准确性。为了评估学习曲线,我们通过双样本(异方差)单尾t检验(P<0.05)将测量结果与经验丰富的机器人引导用户的测量结果进行比较。
与对照组相比,研究组的螺钉置入偏差更少(平均2.6±0.7毫米对1.1±0.4毫米;P<0.0001),4毫米或更大的椎弓根壁破裂更少(平均5.4%对1.5%),外科医生的辐射暴露更低(平均136毫雷姆对4.2毫雷姆),每枚螺钉的透视时间更短(平均33.0秒对0.9秒),手术时间更短(平均1.98小时对1.23小时)。使用机器人引导使经皮椎弓根螺钉置入的准确性提高了58%,从而降低了神经损伤风险(以>4毫米的破裂衡量)、新用户的辐射暴露(降低98.2%)和手术时间(降低36%)。
机器人引导系统的优势可能会让外科医生在为患者提供微创或经皮手术选择时更加安心,并且在总体上实施基于椎弓根的固定时更加从容。这种先进技术还可能使患有复杂解剖畸形的患者能够接受手术,而这些患者通常被排除在基于椎弓根螺钉的手术选择之外。