Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et de Technologies de Saclay, Laboratoire de Photocatalyse et Biohydrogène, 91191 Gif-sur-Yvette, France.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9402-7. doi: 10.1073/pnas.1101026108. Epub 2011 May 23.
CPD photolyase uses light to repair cyclobutane pyrimidine dimers (CPDs) formed between adjacent pyrimidines in UV-irradiated DNA. The enzyme harbors an FAD cofactor in fully reduced state (FADH(-)). The CPD repair mechanism involves electron transfer from photoexcited FADH(-) to the CPD, splitting of its intradimer bonds, and electron return to restore catalytically active FADH(-). The two electron transfer processes occur on time scales of 10(-10) and 10(-9) s, respectively. Until now, CPD splitting itself has only been poorly characterized by experiments. Using a previously unreported transient absorption setup, we succeeded in monitoring cyclobutane thymine dimer repair in the main UV absorption band of intact thymine at 266 nm. Flavin transitions that overlay DNA-based absorption changes at 266 nm were monitored independently in the visible and subtracted to obtain the true repair kinetics. Restoration of intact thymine showed a short lag and a biexponential rise with time constants of 0.2 and 1.5 ns. We assign these two time constants to splitting of the intradimer bonds (creating one intact thymine and one thymine anion radical T(∘-)) and electron return from T(∘-) to the FAD cofactor with recovery of the second thymine, respectively. Previous model studies and computer simulations yielded various CPD splitting times between < 1 ps and < 100 ns. Our experimental results should serve as a benchmark for future efforts to model enzymatic photorepair. The technique and methods developed here may be applied to monitor other photoreactions involving DNA.
CPD 光解酶利用光修复紫外线照射 DNA 中相邻嘧啶之间形成的环丁烷嘧啶二聚体(CPD)。该酶含有处于完全还原状态的黄素腺嘌呤二核苷酸(FADH(-))辅因子。CPD 修复机制涉及从光激发的 FADH(-)向 CPD 的电子转移,分裂其二聚体键,并将电子返回以恢复催化活性的 FADH(-)。这两个电子转移过程分别发生在 10(-10)和 10(-9)秒的时间尺度上。到目前为止,CPD 的分裂本身仅通过实验得到了很差的描述。使用以前未报道的瞬态吸收装置,我们成功地在 266nm 处完整胸腺嘧啶的主要紫外线吸收带监测环丁烷胸腺嘧啶二聚体的修复。在可见光中独立监测与 DNA 吸收变化重叠的黄素跃迁,并将其减去以获得真实的修复动力学。完整胸腺嘧啶的恢复显示出短的滞后和双指数上升,时间常数为 0.2 和 1.5ns。我们将这两个时间常数分别分配给二聚体键的分裂(产生一个完整的胸腺嘧啶和一个胸腺嘧啶阴离子自由基 T(∘-))和从 T(∘-)到 FAD 辅因子的电子返回,同时恢复第二个胸腺嘧啶。先前的模型研究和计算机模拟得出了各种 CPD 分裂时间,范围从 <1ps 到 <100ns。我们的实验结果应为未来建模酶促光修复的努力提供基准。这里开发的技术和方法可用于监测涉及 DNA 的其他光反应。