Suppr超能文献

DNA 光解酶修复环丁烷嘧啶二聚体的动力学和机制。

Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase.

机构信息

Department of Physics, Programs of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14831-6. doi: 10.1073/pnas.1110927108. Epub 2011 Jul 29.

Abstract

Photolyase uses blue light to restore the major ultraviolet (UV)-induced DNA damage, the cyclobutane pyrimidine dimer (CPD), to two normal bases by splitting the cyclobutane ring. Our earlier studies showed that the overall repair is completed in 700 ps through a cyclic electron-transfer radical mechanism. However, the two fundamental processes, electron-tunneling pathways and cyclobutane ring splitting, were not resolved. Here, we use ultrafast UV absorption spectroscopy to show that the CPD splits in two sequential steps within 90 ps and the electron tunnels between the cofactor and substrate through a remarkable route with an intervening adenine. Site-directed mutagenesis reveals that the active-site residues are critical to achieving high repair efficiency, a unique electrostatic environment to optimize the redox potentials and local flexibility, and thus balance all catalytic reactions to maximize enzyme activity. These key findings reveal the complete spatio-temporal molecular picture of CPD repair by photolyase and elucidate the underlying molecular mechanism of the enzyme's high repair efficiency.

摘要

光解酶利用蓝光将主要的紫外线(UV)诱导的 DNA 损伤——环丁烷嘧啶二聚体(CPD)——通过分裂环丁烷环恢复为两个正常碱基。我们之前的研究表明,通过循环电子转移自由基机制,整体修复在 700 皮秒内完成。然而,两个基本过程,电子隧穿途径和环丁烷环的分裂,尚未得到解决。在这里,我们使用超快紫外吸收光谱表明,CPD 在 90 皮秒内分两步分裂,电子通过一个具有 intervening adenine 的显著途径在辅因子和底物之间隧穿。定点突变揭示了活性位点残基对于实现高效率修复至关重要,独特的静电环境可优化氧化还原电势和局部灵活性,从而平衡所有催化反应以最大限度地提高酶活性。这些关键发现揭示了光解酶修复 CPD 的完整时空分子图像,并阐明了该酶高效修复的潜在分子机制。

相似文献

1
Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase.
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14831-6. doi: 10.1073/pnas.1110927108. Epub 2011 Jul 29.
2
Kinetics of cyclobutane thymine dimer splitting by DNA photolyase directly monitored in the UV.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9402-7. doi: 10.1073/pnas.1101026108. Epub 2011 May 23.
3
Electron tunneling pathways and role of adenine in repair of cyclobutane pyrimidine dimer by DNA photolyase.
J Am Chem Soc. 2012 May 16;134(19):8104-14. doi: 10.1021/ja2105009. Epub 2012 May 4.
4
Photolyase: Dynamics and electron-transfer mechanisms of DNA repair.
Arch Biochem Biophys. 2017 Oct 15;632:158-174. doi: 10.1016/j.abb.2017.08.007. Epub 2017 Aug 9.
5
Dynamics and mechanisms of DNA repair by photolyase.
Phys Chem Chem Phys. 2015 May 14;17(18):11933-49. doi: 10.1039/c4cp05286b.
6
DNA photolyase: is the nonproductive back electron transfer really much slower than forward transfer?
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):E1462; author reply E1463. doi: 10.1073/pnas.1202795109. Epub 2012 May 8.
7
Direct observation of thymine dimer repair in DNA by photolyase.
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16128-32. doi: 10.1073/pnas.0506586102. Epub 2005 Sep 16.
8
Functional Conversion of CPD and (6-4) Photolyases by Mutation.
Biochemistry. 2016 Aug 2;55(30):4173-83. doi: 10.1021/acs.biochem.6b00361. Epub 2016 Jul 19.
9
Electron transfer mechanisms of DNA repair by photolyase.
Annu Rev Phys Chem. 2015 Apr;66:691-715. doi: 10.1146/annurev-physchem-040513-103631.
10
Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase.
Biochim Biophys Acta. 2005 Feb 25;1707(1):1-23. doi: 10.1016/j.bbabio.2004.02.010.

引用本文的文献

2
Spectroscopic Characterization of Radical Pair Photochemistry in Nonmigratory Avian Cryptochromes: Magnetic Field Effects in Cry4a.
J Am Chem Soc. 2025 Jul 16;147(28):24286-24298. doi: 10.1021/jacs.4c14037. Epub 2025 Jun 30.
3
Optical coherent quantum control of ultrafast protein electron transfer.
Sci Adv. 2025 Apr 18;11(16):eado9919. doi: 10.1126/sciadv.ado9919. Epub 2025 Apr 16.
4
Stable hypermutators revealed by the genomic landscape of DNA repair genes among yeast species.
bioRxiv. 2025 Mar 17:2025.03.15.643480. doi: 10.1101/2025.03.15.643480.
5
Tunneling Times in an Asymmetric Harmonic Double-Well with Application to Electron Transfers in Biological Macromolecules.
ACS Omega. 2024 Dec 9;9(50):49832-49838. doi: 10.1021/acsomega.4c08622. eCollection 2024 Dec 17.
6
Dynamics and mechanism of DNA repair by a bifunctional cryptochrome.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2417633121. doi: 10.1073/pnas.2417633121. Epub 2024 Dec 2.
7
Elevated DNA Damage without signs of aging in the short-sleeping Mexican Cavefish.
bioRxiv. 2024 Oct 21:2024.04.18.590174. doi: 10.1101/2024.04.18.590174.
8
Dynamic interplays between three redox cofactors in a DNA photolyase revealed by spectral decomposition.
Cell Rep Phys Sci. 2023 Mar 15;4(3). doi: 10.1016/j.xcrp.2023.101297. Epub 2023 Feb 16.

本文引用的文献

1
An AIMD study of the CPD repair mechanism in water: reaction free energy surface and mechanistic implications.
J Phys Chem B. 2011 Apr 14;115(14):3848-59. doi: 10.1021/jp107722z. Epub 2011 Mar 18.
2
An AIMD study of CPD repair mechanism in water: role of solvent in ring splitting.
J Phys Chem B. 2011 Apr 14;115(14):3860-71. doi: 10.1021/jp107723w. Epub 2011 Mar 18.
3
Dynamics and mechanism of repair of ultraviolet-induced (6-4) photoproduct by photolyase.
Nature. 2010 Aug 12;466(7308):887-890. doi: 10.1038/nature09192.
4
What is adenine doing in photolyase?
J Phys Chem B. 2010 Mar 25;114(11):4101-6. doi: 10.1021/jp101093z.
5
Ultrafast solvation dynamics at binding and active sites of photolyases.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2914-9. doi: 10.1073/pnas.1000001107. Epub 2010 Jan 26.
6
A QM/MM investigation of thymine dimer radical anion splitting catalyzed by DNA photolyase.
Chemphyschem. 2009 Feb 2;10(2):400-10. doi: 10.1002/cphc.200800624.
7
Crystal structure and mechanism of a DNA (6-4) photolyase.
Angew Chem Int Ed Engl. 2008;47(52):10076-80. doi: 10.1002/anie.200804268.
8
Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase.
J Am Chem Soc. 2008 Jun 18;130(24):7695-701. doi: 10.1021/ja801152h. Epub 2008 May 24.
9
Femtochemistry in enzyme catalysis: DNA photolyase.
Cell Biochem Biophys. 2007;48(1):32-44. doi: 10.1007/s12013-007-0034-5.
10
Protein dynamics control the kinetics of initial electron transfer in photosynthesis.
Science. 2007 May 4;316(5825):747-50. doi: 10.1126/science.1140030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验