Suppr超能文献

DNA 光解酶修复环丁烷嘧啶二聚体的动力学和机制。

Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase.

机构信息

Department of Physics, Programs of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14831-6. doi: 10.1073/pnas.1110927108. Epub 2011 Jul 29.

Abstract

Photolyase uses blue light to restore the major ultraviolet (UV)-induced DNA damage, the cyclobutane pyrimidine dimer (CPD), to two normal bases by splitting the cyclobutane ring. Our earlier studies showed that the overall repair is completed in 700 ps through a cyclic electron-transfer radical mechanism. However, the two fundamental processes, electron-tunneling pathways and cyclobutane ring splitting, were not resolved. Here, we use ultrafast UV absorption spectroscopy to show that the CPD splits in two sequential steps within 90 ps and the electron tunnels between the cofactor and substrate through a remarkable route with an intervening adenine. Site-directed mutagenesis reveals that the active-site residues are critical to achieving high repair efficiency, a unique electrostatic environment to optimize the redox potentials and local flexibility, and thus balance all catalytic reactions to maximize enzyme activity. These key findings reveal the complete spatio-temporal molecular picture of CPD repair by photolyase and elucidate the underlying molecular mechanism of the enzyme's high repair efficiency.

摘要

光解酶利用蓝光将主要的紫外线(UV)诱导的 DNA 损伤——环丁烷嘧啶二聚体(CPD)——通过分裂环丁烷环恢复为两个正常碱基。我们之前的研究表明,通过循环电子转移自由基机制,整体修复在 700 皮秒内完成。然而,两个基本过程,电子隧穿途径和环丁烷环的分裂,尚未得到解决。在这里,我们使用超快紫外吸收光谱表明,CPD 在 90 皮秒内分两步分裂,电子通过一个具有 intervening adenine 的显著途径在辅因子和底物之间隧穿。定点突变揭示了活性位点残基对于实现高效率修复至关重要,独特的静电环境可优化氧化还原电势和局部灵活性,从而平衡所有催化反应以最大限度地提高酶活性。这些关键发现揭示了光解酶修复 CPD 的完整时空分子图像,并阐明了该酶高效修复的潜在分子机制。

相似文献

1
Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase.DNA 光解酶修复环丁烷嘧啶二聚体的动力学和机制。
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14831-6. doi: 10.1073/pnas.1110927108. Epub 2011 Jul 29.
4
Photolyase: Dynamics and electron-transfer mechanisms of DNA repair.光解酶:DNA修复的动力学与电子转移机制
Arch Biochem Biophys. 2017 Oct 15;632:158-174. doi: 10.1016/j.abb.2017.08.007. Epub 2017 Aug 9.
5
Dynamics and mechanisms of DNA repair by photolyase.光解酶修复DNA的动力学与机制
Phys Chem Chem Phys. 2015 May 14;17(18):11933-49. doi: 10.1039/c4cp05286b.
7
Direct observation of thymine dimer repair in DNA by photolyase.通过光解酶直接观察DNA中胸腺嘧啶二聚体的修复
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16128-32. doi: 10.1073/pnas.0506586102. Epub 2005 Sep 16.
8
Functional Conversion of CPD and (6-4) Photolyases by Mutation.通过突变实现CPD光裂合酶和(6-4)光裂合酶的功能转换
Biochemistry. 2016 Aug 2;55(30):4173-83. doi: 10.1021/acs.biochem.6b00361. Epub 2016 Jul 19.
9
Electron transfer mechanisms of DNA repair by photolyase.光解酶修复DNA的电子转移机制。
Annu Rev Phys Chem. 2015 Apr;66:691-715. doi: 10.1146/annurev-physchem-040513-103631.

引用本文的文献

3
Optical coherent quantum control of ultrafast protein electron transfer.超快蛋白质电子转移的光学相干量子控制
Sci Adv. 2025 Apr 18;11(16):eado9919. doi: 10.1126/sciadv.ado9919. Epub 2025 Apr 16.
6
Dynamics and mechanism of DNA repair by a bifunctional cryptochrome.一种双功能隐花色素进行DNA修复的动力学及机制
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2417633121. doi: 10.1073/pnas.2417633121. Epub 2024 Dec 2.

本文引用的文献

4
What is adenine doing in photolyase?腺嘌呤在光解酶中做什么?
J Phys Chem B. 2010 Mar 25;114(11):4101-6. doi: 10.1021/jp101093z.
5
Ultrafast solvation dynamics at binding and active sites of photolyases.光解酶结合和活性部位的超快溶剂化动力学。
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2914-9. doi: 10.1073/pnas.1000001107. Epub 2010 Jan 26.
9
Femtochemistry in enzyme catalysis: DNA photolyase.酶催化中的飞秒化学:DNA光解酶。
Cell Biochem Biophys. 2007;48(1):32-44. doi: 10.1007/s12013-007-0034-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验