Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
Neuron. 2011 May 26;70(4):614-25. doi: 10.1016/j.neuron.2011.05.005.
How a single fertilized cell generates diverse neuronal populations has been a fundamental biological problem since the 19(th) century. Classical histological methods revealed that postmitotic neurons are produced in a precise temporal and spatial order from germinal cells lining the cerebral ventricles. In the 20(th) century, DNA labeling and histo- and immunohistochemistry helped to distinguish the subtypes of dividing cells and delineate their locations in the ventricular and subventricular zones. Recently, genetic and cell biological methods have provided insights into sequential gene expression and molecular and cellular interactions that generate heterogeneous populations of NSCs leading to specific neuronal classes. This precisely regulated developmental process does not tolerate significant in vivo deviation, making replacement of adult neurons by NSCs during pathology a colossal challenge. In contrast, utilizing the trophic factors emanating from the NSC or their derivatives to slow down deterioration or prevent death of degenerating neurons may be a more feasible strategy.
自 19 世纪以来,一个受精卵如何产生多样化的神经元群体一直是一个基本的生物学问题。经典的组织学方法表明,有丝分裂后的神经元是由沿着脑室排列的生殖细胞以精确的时空顺序产生的。在 20 世纪,DNA 标记和组织学及免疫组织化学有助于区分分裂细胞的亚型,并描绘它们在脑室和室下区的位置。最近,遗传和细胞生物学方法提供了对顺序基因表达以及产生导致特定神经元类别的异质神经干细胞群体的分子和细胞相互作用的深入了解。这个精确调控的发育过程不能容忍体内显著的偏差,因此通过神经干细胞替代成年神经元来治疗病理学中的神经元缺失是一个巨大的挑战。相比之下,利用神经干细胞或其衍生物发出的营养因子来减缓退化神经元的恶化或防止其死亡可能是一种更可行的策略。