Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
Methods Mol Biol. 2021;2311:73-108. doi: 10.1007/978-1-0716-1437-2_7.
Neural stem cells (NSCs) are a valuable tool for the study of neural development and function as well as an important source of cell transplantation strategies for neural disease. NSCs can be used to study how neurons acquire distinct phenotypes and how the interactions between neurons and glial cells in the developing nervous system shape the structure and function of the CNS. NSCs can also be used for cell replacement therapies following CNS injury targeting astrocytes, oligodendrocytes, and neurons. With the availability of patient-derived induced pluripotent stem cells (iPSCs), neurons prepared from NSCs can be used to elucidate the molecular basis of neurological disorders leading to potential treatments. Although NSCs can be derived from different species and many sources, including embryonic stem cells (ESCs), iPSCs, adult CNS, and direct reprogramming of nonneural cells, isolating primary NSCs directly from fetal tissue is still the most common technique for preparation and study of neurons. Regardless of the source of tissue, similar techniques are used to maintain NSCs in culture and to differentiate NSCs toward mature neural lineages. This chapter will describe specific methods for isolating and characterizing multipotent NSCs and neural precursor cells (NPCs) from embryonic rat CNS tissue (mostly spinal cord) and from human ESCs and iPSCs as well as NPCs prepared by reprogramming. NPCs can be separated into neuronal and glial restricted progenitors (NRP and GRP, respectively) and used to reliably produce neurons or glial cells both in vitro and following transplantation into the adult CNS. This chapter will describe in detail the methods required for the isolation, propagation, storage, and differentiation of NSCs and NPCs isolated from rat and mouse spinal cords for subsequent in vitro or in vivo studies as well as new methods associated with ESCs, iPSCs, and reprogramming.
神经干细胞(NSCs)是研究神经发育和功能的宝贵工具,也是神经疾病细胞移植策略的重要来源。NSCs 可用于研究神经元如何获得不同的表型,以及发育中的神经系统中神经元与神经胶质细胞之间的相互作用如何塑造中枢神经系统的结构和功能。NSCs 还可用于中枢神经系统损伤后的细胞替代治疗,靶向星形胶质细胞、少突胶质细胞和神经元。随着患者来源的诱导多能干细胞(iPSCs)的可用性,从 NSCs 制备的神经元可用于阐明导致潜在治疗方法的神经障碍的分子基础。尽管 NSCs 可以从不同物种和许多来源中获得,包括胚胎干细胞(ESCs)、iPSCs、成人中枢神经系统和非神经细胞的直接重编程,但直接从胎儿组织中分离原代 NSCs 仍然是制备和研究神经元最常用的技术。无论组织来源如何,都使用类似的技术来维持 NSCs 在培养中的生长并使 NSCs 向成熟的神经谱系分化。本章将描述从胚胎大鼠中枢神经系统组织(主要是脊髓)以及从人类 ESCs 和 iPSCs 中分离和鉴定多能 NSCs 和神经前体细胞(NPCs)的具体方法,以及通过重编程制备的 NPCs。NPCs 可分为神经元和神经胶质限制性祖细胞(NRP 和 GRP,分别),并可用于在体外和移植到成年中枢神经系统后可靠地产生神经元或神经胶质细胞。本章将详细描述从大鼠和小鼠脊髓中分离、增殖、储存和分化 NSCs 和 NPCs 的方法,用于随后的体外或体内研究,以及与 ESCs、iPSCs 和重编程相关的新方法。