College of Computer Science, Zhejiang University, Zhejiang, China.
IEEE Trans Image Process. 2012 Jan;21(1):341-57. doi: 10.1109/TIP.2011.2157514. Epub 2011 May 23.
The luminance of a natural scene is often of high dynamic range (HDR). In this paper, we propose a new scheme to handle HDR scenes by integrating locally adaptive scene detail capture and suppressing gradient reversals introduced by the local adaptation. The proposed scheme is novel for capturing an HDR scene by using a standard dynamic range (SDR) device and synthesizing an image suitable for SDR displays. In particular, we use an SDR capture device to record scene details (i.e., the visible contrasts and the scene gradients) in a series of SDR images with different exposure levels. Each SDR image responds to a fraction of the HDR and partially records scene details. With the captured SDR image series, we first calculate the image luminance levels, which maximize the visible contrasts, and then the scene gradients embedded in these images. Next, we synthesize an SDR image by using a probabilistic model that preserves the calculated image luminance levels and suppresses reversals in the image luminance gradients. The synthesized SDR image contains much more scene details than any of the captured SDR image. Moreover, the proposed scheme also functions as the tone mapping of an HDR image to the SDR image, and it is superior to both global and local tone mapping operators. This is because global operators fail to preserve visual details when the contrast ratio of a scene is large, whereas local operators often produce halos in the synthesized SDR image. The proposed scheme does not require any human interaction or parameter tuning for different scenes. Subjective evaluations have shown that it is preferred over a number of existing approaches.
自然场景的亮度通常具有高动态范围 (HDR)。在本文中,我们提出了一种新的方案,通过集成局部自适应场景细节捕捉和抑制局部自适应引起的梯度反转来处理 HDR 场景。该方案通过使用标准动态范围 (SDR) 设备捕捉 HDR 场景并合成适合 SDR 显示器的图像,从而实现了捕捉 HDR 场景的新颖性。特别是,我们使用 SDR 拍摄设备在不同曝光水平的一系列 SDR 图像中记录场景细节(即可见对比度和场景梯度)。每个 SDR 图像对应 HDR 的一部分,并部分记录场景细节。使用捕获的 SDR 图像系列,我们首先计算出最大化可见对比度的图像亮度级别,然后计算这些图像中嵌入的场景梯度。接下来,我们使用概率模型来合成 SDR 图像,该模型保留计算出的图像亮度级别并抑制图像亮度梯度中的反转。合成的 SDR 图像包含比任何捕获的 SDR 图像更多的场景细节。此外,该方案还可以作为 HDR 图像到 SDR 图像的色调映射,并且优于全局和局部色调映射算子。这是因为全局算子在场景对比度较大时无法保留视觉细节,而局部算子在合成的 SDR 图像中经常产生晕影。该方案不需要针对不同场景进行任何人工交互或参数调整。主观评估表明,它优于许多现有的方法。