Suppr超能文献

利用光偏振从单次曝光实现深度高动态范围成像。

Exploiting Light Polarization for Deep HDR Imaging from a Single Exposure.

机构信息

Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, 155, Via Torino, 30170 Venice, Italy.

Institute of Visual Computing & Human-Centered Technology, TU Wien, Favoritenstr. 9-11/E193-02, 1040 Vienna, Austria.

出版信息

Sensors (Basel). 2023 Jun 6;23(12):5370. doi: 10.3390/s23125370.

Abstract

In computational photography, high dynamic range (HDR) imaging refers to the family of techniques used to recover a wider range of intensity values compared to the limited range provided by standard sensors. Classical techniques consist of acquiring a scene-varying exposure to compensate for saturated and underexposed regions, followed by a non-linear compression of intensity values called tone mapping. Recently, there has been a growing interest in estimating HDR images from a single exposure. Some methods exploit data-driven models trained to estimate values outside the camera's visible intensity levels. Others make use of polarimetric cameras to reconstruct HDR information without exposure bracketing. In this paper, we present a novel HDR reconstruction method that employs a single PFA (polarimetric filter array) camera with an additional external polarizer to increase the scene's dynamic range across the acquired channels and to mimic different exposures. Our contribution consists of a pipeline that effectively combines standard HDR algorithms based on bracketing and data-driven solutions designed to work with polarimetric images. In this regard, we present a novel CNN (convolutional neural network) model that exploits the underlying mosaiced pattern of the PFA in combination with the external polarizer to estimate the original scene properties, and a second model designed to further improve the final tone mapping step. The combination of such techniques enables us to take advantage of the light attenuation given by the filters while producing an accurate reconstruction. We present an extensive experimental section in which we validate the proposed method on both synthetic and real-world datasets specifically acquired for the task. Quantitative and qualitative results show the effectiveness of the approach when compared to state-of-the-art methods. In particular, our technique exhibits a PSNR (peak signal-to-noise ratio) on the whole test set equal to 23 dB, which is 18% better with respect to the second-best alternative.

摘要

在计算摄影中,高动态范围(HDR)成像指的是用于恢复比标准传感器提供的有限范围更宽的强度值范围的技术家族。经典技术包括获取场景变化的曝光,以补偿过饱和和欠曝光区域,然后对强度值进行非线性压缩,称为色调映射。最近,人们对从单个曝光估计 HDR 图像越来越感兴趣。一些方法利用数据驱动的模型来估计相机可见强度水平之外的值。其他方法则利用偏振相机在不进行曝光包围的情况下重建 HDR 信息。在本文中,我们提出了一种新颖的 HDR 重建方法,该方法使用带有附加外部偏光镜的单个 PFA(偏振滤光片阵列)相机来增加场景的动态范围,跨获取的通道,并模拟不同的曝光。我们的贡献在于一个有效的管道,该管道有效地结合了基于曝光包围的标准 HDR 算法和旨在与偏振图像一起使用的数据驱动解决方案。在这方面,我们提出了一种新颖的 CNN(卷积神经网络)模型,该模型利用 PFA 的基础马赛克图案结合外部偏光镜来估计原始场景属性,以及第二个模型旨在进一步改进最终色调映射步骤。这种技术的结合使我们能够利用滤波器提供的光衰减,同时产生准确的重建。我们在专门为此任务获取的合成和真实世界数据集上进行了广泛的实验部分,验证了所提出的方法。定量和定性结果表明,与最先进的方法相比,该方法的有效性。特别是,我们的技术在整个测试集上的 PSNR(峰值信噪比)等于 23dB,与第二好的替代方案相比,提高了 18%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1475/10301130/f0ccd1f55a47/sensors-23-05370-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验