Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC.
J Hazard Mater. 2011 Aug 15;192(1):99-107. doi: 10.1016/j.jhazmat.2011.04.097. Epub 2011 May 4.
Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO(2)) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO(2) cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T(0)), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T(max)) and pressure (P(max)). The T(max) and P(max) of the charged Li-ion battery during the runaway reaction reach 903.0°C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO(2) batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.
商业 18650 锂离子电池(LiCoO₂)绝热失控反应相关的热滥用行为正在绝热量热仪、通风套件 2(VSP2)中进行研究。我们选择了四家全球电池制造商,索尼、三洋、三星和 LG,并测试了他们的 Li-ion 电池,这些电池具有 LiCoO₂阴极,以确定它们的热不稳定性和绝热失控特性。我们使用带有定制不锈钢测试罐的 VSP2 对充电(4.2V)和未充电(3.7V)的 18650 Li-ion 电池进行测试,以评估它们的热危险特性,如初始放热温度(T(0))、自加热率(dT/dt)、压力上升率(dP/dt)、压力-温度曲线以及最高温度(T(max))和压力(P(max))。在失控反应过程中,充电 Li-ion 电池的 T(max)和 P(max)分别达到 903.0°C 和 1565.9 psig(磅力每平方英寸表压)。这导致了热爆炸,反应热为 26.2 kJ。还使用 Arrhenius 模型确定了 LiCoO₂电池反应的热动力学参数。锂离子电池(电池组)的热反应机制被证明是储能的一个重要安全关注点。此外,使用 VSP2 对各种 Li-ion 电池的自反应等级进行分类,展示了绝热量热法方法的新应用。