Suppr超能文献

人类行走和奔跑的力学和能量学:关节水平视角。

The mechanics and energetics of human walking and running: a joint level perspective.

机构信息

Department of Biomedical Engineering, North Carolina State University, 4130 EBIII, 911 Oval Drive, NC 27695-7115, USA.

出版信息

J R Soc Interface. 2012 Jan 7;9(66):110-8. doi: 10.1098/rsif.2011.0182. Epub 2011 May 25.

Abstract

Humans walk and run at a range of speeds. While steady locomotion at a given speed requires no net mechanical work, moving faster does demand both more positive and negative mechanical work per stride. Is this increased demand met by increasing power output at all lower limb joints or just some of them? Does running rely on different joints for power output than walking? How does this contribute to the metabolic cost of locomotion? This study examined the effects of walking and running speed on lower limb joint mechanics and metabolic cost of transport in humans. Kinematic and kinetic data for 10 participants were collected for a range of walking (0.75, 1.25, 1.75, 2.0 m s(-1)) and running (2.0, 2.25, 2.75, 3.25 m s(-1)) speeds. Net metabolic power was measured by indirect calorimetry. Within each gait, there was no difference in the proportion of power contributed by each joint (hip, knee, ankle) to total power across speeds. Changing from walking to running resulted in a significant (p = 0.02) shift in power production from the hip to the ankle which may explain the higher efficiency of running at speeds above 2.0 m s(-1) and shed light on a potential mechanism behind the walk-run transition.

摘要

人类以不同的速度行走和奔跑。虽然以给定速度保持稳定的运动不需要净机械功,但要想跑得更快,每步所需的正向和负向机械功都要增加。这种需求的增加是通过增加所有下肢关节还是只是其中一些关节的功率输出来满足的?跑步和步行相比,对功率输出的依赖是否来自不同的关节?这如何影响运动的代谢成本?本研究探讨了步行和跑步速度对人类下肢关节力学和运动代谢成本的影响。对 10 名参与者进行了一系列步行(0.75、1.25、1.75、2.0 m s(-1)) 和跑步(2.0、2.25、2.75、3.25 m s(-1))速度的运动学和动力学数据收集。通过间接测热法测量净代谢功率。在每种步态中,各关节(髋、膝、踝)对总功率的贡献比例在各速度之间没有差异。从步行到跑步的转变导致从髋关节到踝关节的功率产生发生了显著(p = 0.02)的转变,这可能解释了 2.0 m s(-1)以上跑步效率更高的原因,并揭示了从步行到跑步转变背后的潜在机制。

相似文献

4
Joint-level mechanics of the walk-to-run transition in humans.人类步行到跑步转换过程中的关节水平力学
J Exp Biol. 2014 Oct 1;217(Pt 19):3519-27. doi: 10.1242/jeb.107599. Epub 2014 Aug 7.

引用本文的文献

1
Plantar flexors are the main engine of walking in healthy adults.在健康成年人中,跖屈肌是行走的主要动力来源。
Front Sports Act Living. 2025 Jul 8;7:1595065. doi: 10.3389/fspor.2025.1595065. eCollection 2025.

本文引用的文献

3
It pays to have a spring in your step.轻快的步伐有益身心。
Exerc Sport Sci Rev. 2009 Jul;37(3):130-8. doi: 10.1097/JES.0b013e31819c2df6.
4
Modular control of human walking: a simulation study.人类行走的模块化控制:一项模拟研究。
J Biomech. 2009 Jun 19;42(9):1282-7. doi: 10.1016/j.jbiomech.2009.03.009. Epub 2009 Apr 25.
7
The effect of walking speed on muscle function and mechanical energetics.步行速度对肌肉功能和机械能学的影响。
Gait Posture. 2008 Jul;28(1):135-43. doi: 10.1016/j.gaitpost.2007.11.004. Epub 2007 Dec 26.
9
Medial gastrocnemius muscle behavior during human running and walking.人类跑步和行走过程中腓肠肌内侧头的行为。
Gait Posture. 2007 Mar;25(3):380-4. doi: 10.1016/j.gaitpost.2006.05.002. Epub 2006 Jun 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验