Laboratoire de Physique Théorique-IRSAMC, Université de Toulouse, CNRS, 31062 Toulouse, France.
J Phys Condens Matter. 2011 Jun 15;23(23):234114. doi: 10.1088/0953-8984/23/23/234114. Epub 2011 May 25.
The problem of a particle diffusion in a fluctuating scalar field is studied. In contrast to most studies of advection diffusion in random fields, ours analyzes the case where the particle position is also coupled to the dynamics of the field. Physical realizations of this problem are numerous and range from the diffusion of proteins in fluctuating membranes to the diffusion of localized magnetic fields in spin systems. We present exact results for the diffusion constant of particles diffusing in dynamical Gaussian fields in the adiabatic limit, where the field evolution is much faster than the particle diffusion. In addition we compute the diffusion constant perturbatively, in the weak coupling limit, when the interaction of the particle with the field is small, using a Kubo-type relation. Finally we construct a simple toy model which can be solved exactly, and which extrapolates between the adiabatic limit, for fields with rapid dynamics, and the limit where the field is quenched or frozen.
研究了在脉动标量场中粒子扩散的问题。与大多数在随机场中对流扩散的研究不同,我们分析了粒子位置也与场的动力学耦合的情况。这个问题的物理实现有很多,从在脉动膜中扩散的蛋白质到自旋系统中局部磁场的扩散都有。我们给出了在绝热极限下,在动态高斯场中扩散的粒子的扩散常数的精确结果,其中场的演化速度远快于粒子的扩散。此外,当粒子与场的相互作用很小时,我们还在弱耦合极限下通过库侔型关系进行了扩散常数的微扰计算。最后,我们构建了一个简单的玩具模型,可以精确求解,它可以在外加场的动力学很快的绝热极限和场被猝灭或冻结的极限之间进行外推。