Démery Vincent
Institut Jean Le Rond d'Alembert, CNRS and UPMC, Université Paris 6, UMR 7190, F-75005 Paris, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052105. doi: 10.1103/PhysRevE.87.052105. Epub 2013 May 6.
We study the diffusion of a Brownian particle quadratically coupled to a thermally fluctuating field. In the weak-coupling limit, a path-integral formulation allows us to compute the effective diffusion coefficient in the cases of an active particle, which tends to suppress field fluctuations, and of a passive particle, which only undergoes field fluctuations. We show that the behavior is similar to what was previously found for a linear coupling: an active particle is always slowed down, whereas a passive particle is slowed down in a slow field and accelerated in a fast field. Numerical simulations show a good agreement with the analytical calculations. The examples of a membrane protein coupled to the curvature or composition of the membrane are discussed, with a focus on the room for anomalous diffusion.
我们研究了一个与热涨落场二次耦合的布朗粒子的扩散。在弱耦合极限下,路径积分形式使我们能够计算在主动粒子(倾向于抑制场涨落)和被动粒子(仅经历场涨落)情况下的有效扩散系数。我们表明,其行为与先前在线性耦合中发现的类似:主动粒子总是会变慢,而被动粒子在慢场中变慢,在快场中加速。数值模拟与解析计算结果吻合良好。文中讨论了与膜的曲率或组成耦合的膜蛋白的例子,重点关注反常扩散的空间。