Computational Cell Biomechanics Team, VCAD System Research Program, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
Biomech Model Mechanobiol. 2012 Mar;11(3-4):291-302. doi: 10.1007/s10237-011-0317-z. Epub 2011 May 26.
The adaptive structure and functional changes of the actin cytoskeleton are induced by its mechanical behavior at various temporal and spatial scales. In particular, the mechanical behaviors at different scales play important roles in the mechanical functions of various cells, and these multiscale phenomena require clarification. To establish a milestone toward achieving multiscale modeling and simulation, this paper reviews mathematical analyses and simulation methods applied to the mechanics of the filamentous actin cytoskeleton. The actin cytoskeleton demonstrates characteristic behaviors at every temporal and spatial scale, and mathematical models and simulation methods can be applied to each level of actin cytoskeletal structure ranging from the molecular to the network level. This paper considers studies on mathematical models and simulation methods based on the molecular dynamics, coarse-graining, and continuum dynamics approaches. Every temporal and spatial scale of actin cytoskeletal structure is considered, and it is expected that discrete and continuum dynamics ranging from functional expression at the molecular level to macroscopic functional expression at the whole cell level will be developed and applied to multiscale modeling and simulation.
肌动蛋白细胞骨架的适应性结构和功能变化是由其在各种时间和空间尺度上的力学行为引起的。特别是,不同尺度上的力学行为在各种细胞的力学功能中起着重要作用,这些多尺度现象需要澄清。为了朝着实现多尺度建模和模拟迈出重要一步,本文综述了应用于丝状肌动蛋白细胞骨架力学的数学分析和模拟方法。肌动蛋白细胞骨架在每一时间和空间尺度上都表现出特征性的行为,并且可以将数学模型和模拟方法应用于从分子到网络水平的每个肌动蛋白细胞骨架结构层次。本文考虑了基于分子动力学、粗粒化和连续体动力学方法的数学模型和模拟方法的研究。考虑了肌动蛋白细胞骨架结构的每一时间和空间尺度,预计将从分子水平的功能表达到整个细胞水平的宏观功能表达,开发和应用离散和连续体动力学,以实现多尺度建模和模拟。