Suppr超能文献

模拟内皮细胞在周期性拉伸作用下的肌动蛋白丝重组。

Modeling actin filament reorganization in endothelial cells subjected to cyclic stretch.

作者信息

Civelekoglu G, Tardy Y, Meister J J

机构信息

Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland.

出版信息

Bull Math Biol. 1998 Nov;60(6):1017-37. doi: 10.1006/S0092-8240(98)90001-5.

Abstract

Hemodynamic forces affect endothelial cell morphology and function. In particular, circumferential cyclic stretch of blood vessels, due to pressure changes during the cardiac cycle, is known to affect the endothelial cell shape, mediating the alignment of the cells in the direction perpendicular to stretch. This change in cell shape proceeds a drastic reorganization at the internal level. The cellular scaffolding, mainly composed of actin filaments, reorganize in the direction which later becomes the cell's long axis. How this external mechanical stimulus is 'sensed' and transduced into the cell is still unknown. Here, we develop a mathematical model depicting the dynamics of actin filaments, and the influence of the cyclic stretch of the substratum based on the experimental evidence that external stimuli may be transduced inside the cell via transmembrane proteins which are coupled with actin filaments on the cytoplasmic side. Based on this view, we investigate two approaches describing the formulation of the transduction mechanisms involving the coupling between filaments and the membrane proteins. As a result, we find that the mechanical stimulus could cause the experimentally observed reorganization of the entire cytoskeleton simply by altering the dynamics of the filaments connected with the integral membrane proteins, as described in our model. Comparison of our results with previous studies of cytoskeletal dynamics reveals that the cytoskeleton, which, in the absence of the effect of stretch would maintain its isotropic distribution, slowly aligns with the precise direction set by the external stimulus. It is found that even a feeble stimulus, coupled with a strong internal dynamics, is sufficient to align actin filaments perpendicular to the direction of stretch.

摘要

血流动力学力影响内皮细胞的形态和功能。特别是,由于心动周期中的压力变化,血管的周向循环拉伸已知会影响内皮细胞的形状,介导细胞在垂直于拉伸方向上的排列。这种细胞形状的变化在内部层面引发了剧烈的重组。主要由肌动蛋白丝组成的细胞支架会在后来成为细胞长轴的方向上进行重组。这种外部机械刺激是如何被“感知”并传导到细胞内的仍然未知。在这里,我们基于外部刺激可能通过与细胞质侧肌动蛋白丝偶联的跨膜蛋白传导到细胞内的实验证据,开发了一个描述肌动蛋白丝动力学以及基质循环拉伸影响的数学模型。基于这一观点,我们研究了两种描述涉及丝与膜蛋白偶联的转导机制公式的方法。结果,我们发现如我们模型中所述,机械刺激仅通过改变与整合膜蛋白相连的丝的动力学,就可能导致实验观察到的整个细胞骨架的重组。将我们的结果与先前关于细胞骨架动力学的研究进行比较发现,在没有拉伸作用时会保持各向同性分布的细胞骨架,会缓慢地与外部刺激设定的精确方向对齐。研究发现,即使是微弱的刺激,加上强大的内部动力学,也足以使肌动蛋白丝垂直于拉伸方向排列。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验