Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France.
Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, 59000 Lille, France.
Philos Trans A Math Phys Eng Sci. 2020 Dec 11;378(2186):20190604. doi: 10.1098/rsta.2019.0604. Epub 2020 Oct 26.
While many fields have contributed to biological physics, nanotechnology offers a new scale of observation. High-speed atomic force microscopy (HS-AFM) provides nanometre structural information and dynamics with subsecond resolution of biological systems. Moreover, HS-AFM allows us to measure piconewton forces within microseconds giving access to unexplored, fast biophysical processes. Thus, HS-AFM provides a tool to nourish biological physics through the observation of emergent physical phenomena in biological systems. In this review, we present an overview of the contribution of HS-AFM, both in imaging and force spectroscopy modes, to the field of biological physics. We focus on examples in which HS-AFM observations on membrane remodelling, molecular motors or the unfolding of proteins have stimulated the development of novel theories or the emergence of new concepts. We finally provide expected applications and developments of HS-AFM that we believe will continue contributing to our understanding of nature, by serving to the dialogue between biology and physics. This article is part of a discussion meeting issue 'Dynamic microscopy relating structure and function'.
虽然许多领域都为生物物理学做出了贡献,但纳米技术提供了一个新的观察尺度。高速原子力显微镜(HS-AFM)以亚秒的分辨率提供生物系统的纳米级结构信息和动力学。此外,HS-AFM 使我们能够在微秒内测量皮牛顿力,从而能够探索以前未知的快速生物物理过程。因此,HS-AFM 通过观察生物系统中出现的物理现象,为生物物理学提供了一种工具。在这篇综述中,我们介绍了 HS-AFM 在成像和力谱模式下对生物物理学领域的贡献。我们重点介绍了一些例子,其中 HS-AFM 观察到的膜重塑、分子马达或蛋白质的展开,激发了新理论的发展或新概念的出现。我们最后提供了我们认为 HS-AFM 的预期应用和发展,它们将通过服务于生物学和物理学之间的对话,继续有助于我们对自然的理解。本文是“与结构和功能相关的动态显微镜”讨论会议的一部分。