Suppr超能文献

智能技术在移植数据库中的应用:对2009年和2010年发表文章的综述

Application of the intelligent techniques in transplantation databases: a review of articles published in 2009 and 2010.

作者信息

Sousa F S, Hummel A D, Maciel R F, Cohrs F M, Falcão A E J, Teixeira F, Baptista R, Mancini F, da Costa T M, Alves D, Pisa I T

机构信息

Programa de Pós-graduação em Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil.

出版信息

Transplant Proc. 2011 May;43(4):1340-2. doi: 10.1016/j.transproceed.2011.02.028.

Abstract

The replacement of defective organs with healthy ones is an old problem, but only a few years ago was this issue put into practice. Improvements in the whole transplantation process have been increasingly important in clinical practice. In this context are clinical decision support systems (CDSSs), which have reflected a significant amount of work to use mathematical and intelligent techniques. The aim of this article was to present consideration of intelligent techniques used in recent years (2009 and 2010) to analyze organ transplant databases. To this end, we performed a search of the PubMed and Institute for Scientific Information (ISI) Web of Knowledge databases to find articles published in 2009 and 2010 about intelligent techniques applied to transplantation databases. Among 69 retrieved articles, we chose according to inclusion and exclusion criteria. The main techniques were: Artificial Neural Networks (ANN), Logistic Regression (LR), Decision Trees (DT), Markov Models (MM), and Bayesian Networks (BN). Most articles used ANN. Some publications described comparisons between techniques or the use of various techniques together. The use of intelligent techniques to extract knowledge from databases of healthcare is increasingly common. Although authors preferred to use ANN, statistical techniques were equally effective for this enterprise.

摘要

用健康器官替换有缺陷的器官是一个由来已久的问题,但直到几年前这个问题才得以付诸实践。在临床实践中,整个移植过程的改进变得越来越重要。在这种背景下出现了临床决策支持系统(CDSSs),该系统反映了为运用数学和智能技术而开展的大量工作。本文的目的是介绍对近年来(2009年和2010年)用于分析器官移植数据库的智能技术的思考。为此,我们对PubMed和科学信息研究所(ISI)的Web of Knowledge数据库进行了检索,以查找2009年和2010年发表的关于应用于移植数据库的智能技术的文章。在检索到的69篇文章中,我们根据纳入和排除标准进行了筛选。主要技术包括:人工神经网络(ANN)、逻辑回归(LR)、决策树(DT)、马尔可夫模型(MM)和贝叶斯网络(BN)。大多数文章使用了人工神经网络。一些出版物描述了技术之间的比较或多种技术的联合使用。利用智能技术从医疗保健数据库中提取知识变得越来越普遍。尽管作者们更喜欢使用人工神经网络,但统计技术在这项工作中同样有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验