Suppr超能文献

预测小儿肝移植后的理想结局:一项利用机器学习分析对小儿肝移植数据研究进行拓展的探索性研究。

Predicting ideal outcome after pediatric liver transplantation: An exploratory study using machine learning analyses to leverage Studies of Pediatric Liver Transplantation Data.

作者信息

Wadhwani Sharad Indur, Hsu Evelyn K, Shaffer Michele L, Anand Ravinder, Ng Vicky Lee, Bucuvalas John C

机构信息

Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

University of Washington School of Medicine, Seattle Children's Hospital, Seattle, Washington.

出版信息

Pediatr Transplant. 2019 Nov;23(7):e13554. doi: 10.1111/petr.13554. Epub 2019 Jul 22.

Abstract

Machine learning analyses allow for the consideration of numerous variables in order to accommodate complex relationships that would not otherwise be apparent in traditional statistical methods to better classify patient risk. The SPLIT registry data were analyzed to determine whether baseline demographic factors and clinical/biochemical factors in the first-year post-transplant could predict ideal outcome at 3 years (IO-3) after LT. Participants who received their first, isolated LT between 2002 and 2006 and had follow-up data 3 years post-LT were included. IO-3 was defined as alive at 3 years, normal ALT (<50) or GGT (<50), normal GFR, no non-liver transplants, no cytopenias, and no PTLD. Heat map analysis and RFA were used to characterize the impact of baseline and 1-year factors on IO-3. 887/1482 SPLIT participants met inclusion criteria; 334 had IO-3. Demographic, biochemical, and clinical variables did not elucidate a visual signal on heat map analysis. RFA identified non-white race (vs white race), increased length of operation, vascular and biliary complications within 30 days, and duct-to-duct biliary anastomosis to be negatively associated with IO-3. UNOS regions 2 and 5 were also identified as important factors. RFA had an accuracy rate of 0.71 (95% CI: 0.68-0.74), PPV = 0.83, and NPV = 0.70. RFA identified participant variables that predicted IO-3. These findings may allow for better risk stratification and personalization of care following pediatric liver transplantation.

摘要

机器学习分析能够考虑众多变量,以适应复杂关系,而这些关系在传统统计方法中并不明显,从而更好地对患者风险进行分类。对SPLIT登记数据进行分析,以确定移植后第一年的基线人口统计学因素和临床/生化因素是否能够预测肝移植后3年的理想结局(IO-3)。纳入了在2002年至2006年间接受首次孤立肝移植且有肝移植后3年随访数据的参与者。IO-3定义为3年存活、谷丙转氨酶(ALT)正常(<50)或谷氨酰转肽酶(GGT)正常(<50)、肾小球滤过率(GFR)正常、无非肝移植、无血细胞减少且无移植后淋巴细胞增生性疾病(PTLD)。使用热图分析和随机森林分析(RFA)来描述基线因素和1年因素对IO-3的影响。14名SPLIT参与者中的887名符合纳入标准;334名有IO-3。人口统计学、生化和临床变量在热图分析中未显示出明显信号。RFA确定非白人种族(与白人种族相比)、手术时间延长、30天内的血管和胆道并发症以及胆管对胆管的胆肠吻合术与IO-3呈负相关。美国器官共享联合网络(UNOS)的2区和5区也被确定为重要因素。RFA的准确率为0.71(95%置信区间:0.68-0.74),阳性预测值(PPV)=0.83,阴性预测值(NPV)=0.70。RFA确定了预测IO-3的参与者变量。这些发现可能有助于小儿肝移植后更好地进行风险分层和个性化护理。

相似文献

引用本文的文献

6
Artificial Intelligence in Liver Diseases: Recent Advances.人工智能在肝脏疾病中的应用:最新进展。
Adv Ther. 2024 Mar;41(3):967-990. doi: 10.1007/s12325-024-02781-5. Epub 2024 Jan 29.

本文引用的文献

2
OPTN/SRTR 2016 Annual Data Report: Liver.OPTN/SRTR 2016 年度数据报告:肝脏。
Am J Transplant. 2018 Jan;18 Suppl 1:172-253. doi: 10.1111/ajt.14559.
3
Tolerance after liver transplantation: Where are we?肝移植后的耐受:我们在哪里?
Liver Transpl. 2017 Dec;23(12):1601-1614. doi: 10.1002/lt.24845.
6
The Trouble With Exceptional Exceptions.特殊例外的问题
Am J Transplant. 2016 Nov;16(11):3073-3074. doi: 10.1111/ajt.13920. Epub 2016 Jul 13.
8
Precision Public Health for the Era of Precision Medicine.精准医学时代的精准公共卫生。
Am J Prev Med. 2016 Mar;50(3):398-401. doi: 10.1016/j.amepre.2015.08.031. Epub 2015 Nov 4.
9
Public Health in the Precision-Medicine Era.精准医学时代的公共卫生
N Engl J Med. 2015 Aug 6;373(6):499-501. doi: 10.1056/NEJMp1506241.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验