Suppr超能文献

Regulation of Na+ channels in frog lung epithelium: a target tissue for aldosterone action.

作者信息

Fischer H, Clauss W

机构信息

Institut für Veterinärphysiologie, Freie Universität Berlin.

出版信息

Pflugers Arch. 1990 Apr;416(1-2):62-7. doi: 10.1007/BF00370222.

Abstract

Sodium transport across isolated lung tissue of the frog Xenopus laevis was measured in Ussing chambers under voltage-clamp conditions. Perfusing the lungs with NaCl-Ringer's solutions on both sides, a basal distinct amiloride-blockable Na+ current was present. Incubating the lungs with 1 mumol/l aldosterone from the pleural side raised the short circuit current after a 1-h latent period. Maximal values were reached after 4-5 h of aldosterone treatment, at which time the transepithelial Na+ current was more than doubled compared to the control. The stimulatory effect was totally inhibited when the aldosterone treatment was preceded by incubation of the lung tissues with spironolactone in 2000-fold excess. In the presence of amiloride (0.5-8 mumol/l) in the alveolar compartment, a Lorentzian noise component appeared in the power spectrum of the fluctuations in the short circuit current. This enabled the calculation of single Na+ channel current and Na+ channel density under both experimental conditions. Aldosterone stimulation did not change single Na+ channel current. On the other hand, the number of conducting Na+ channels increased in parallel with the transepithelial Na+ transport. This suggests that the alveolar epithelium may be a physiological target tissue for aldosterone. Since fluid absorption in the lung is secondary to active Na+ transport, aldosterone may be a potent regulator for maintaining the relatively fluid-free state of the lumen of the lung in some cases of fluid accumulation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验