Fischer H, Van Driessche W, Clauss W
Institut für Veterinärphysiologie, Freie Universität Berlin, Federal Republic of Germany.
Am J Physiol. 1989 Apr;256(4 Pt 1):C764-71. doi: 10.1152/ajpcell.1989.256.4.C764.
To reveal the mechanism of Na+ transport across Xenopus lung epithelium, we recorded short-circuit current (Isc), transepithelial resistance (Rt), and current noise spectra while the isolated lung tissues were mounted in an Ussing-type chamber. Mean values of Isc and Rt obtained while the tissue was bilaterally incubated with NaCl-Ringer solution were Isc = 11.57 +/- 1.19 microA.cm-2 and Rt = 0.82 +/- 0.07 k omega.cm2. Amiloride added to the mucosal (apical) side depressed Isc by 61 to 99%. Ouabain abolished Isc totally when added to the basolateral compartment. Adenosine 3',5'-cyclic monophosphate (cAMP), epinephrine, and a variety of other compounds did not alter Isc significantly. Transepithelial depolarization with serosal KCl solution reduced Isc to 6.22 +/- 1.37 microA.cm-2. Amiloride-sensitive current and the kinetics of amiloride interaction were not significantly affected by depolarization. Fluctuation analysis of Isc in the presence of amiloride revealed a Lorentzian component in the power density spectrum indicating apical Na+ channels. Assuming pseudo-first order kinetics, we calculated single channel currents (iNa) and channel density (M): iNa = 0.29 +/- 0.04 pA and M = 0.24 +/- 0.04 micron 2. Our results show that the route for Na+ transport through lung epithelial cells follows the classical Koefoed-Johnson-Ussing model for tight epithelia.
为揭示蛙肺上皮细胞跨膜转运钠离子的机制,我们将分离的肺组织置于尤斯灌流室中,记录短路电流(Isc)、跨上皮电阻(Rt)和电流噪声谱。当组织双侧置于氯化钠-林格氏液中孵育时,测得的Isc和Rt平均值分别为Isc = 11.57 +/- 1.19微安/平方厘米和Rt = 0.82 +/- 0.07千欧·平方厘米。添加到黏膜(顶端)侧的氨氯吡咪使Isc降低了61%至99%。添加到基底外侧隔室的哇巴因完全消除了Isc。腺苷3',5'-环磷酸(cAMP)、肾上腺素和其他多种化合物对Isc无显著影响。用浆膜氯化钾溶液进行跨上皮去极化使Isc降至6.22 +/- 1.37微安/平方厘米。去极化对氨氯吡咪敏感电流及氨氯吡咪相互作用动力学无显著影响。在氨氯吡咪存在下对Isc进行波动分析,发现功率密度谱中有洛伦兹成分,表明存在顶端钠离子通道。假设为伪一级动力学,我们计算了单通道电流(iNa)和通道密度(M):iNa = 0.29 +/- 0.04皮安,M = 0.24 +/- 0.04微米²。我们的结果表明,钠离子通过肺上皮细胞的转运途径遵循紧密上皮细胞的经典科弗德-约翰逊-尤斯模型。