Paustian T D, Shah V K, Roberts G P
Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706.
Biochemistry. 1990 Apr 10;29(14):3515-22. doi: 10.1021/bi00466a014.
The Azotobacter vinelandii mutant strain UW45 contains a mutation in the nifB gene and produces an inactive dinitrogenase protein that can be activated by the addition of purified iron-molybdenum cofactor (FeMoco). This FeMoco-deficient dinitrogenase (Apo I) has now been purified 96-fold to greater than 95% purity and is FeMoco-activatable to 2200 nmol of C2H2 reduced/(min.mg of protein). The Apo I complex was found to contain two molecules of a 20-kDa protein, in addition to the alpha 2 beta 2 tetramer found for isolated holodinitrogenase (Holo I). The Apo I complex contained 15 +/- 2 mol of Fe per mole, but no Mo. While the presence of dinitrogenase reductase caused a 2-fold stimulation in the activation of the purified Apo I complex by FeMoco, this enhancement resulted from the stabilization of Apo I by dinitrogenase reductase to the denaturing effects of N-methylformamide. When the activation was performed in the absence of N-methylformamide, there was no enhancement by dinitrogenase reductase alone or by dinitrogenase reductase-Mg-ATP complex. The Apo I complex is more sensitive to O2 than Holo I, with a half-life in air of 6 min; however, the addition of dithiothreitol to Apo I during the exposure to air (or after exposure) resulted in a half-life very similar to that seen for Holo I. This suggests that sulfhydryl(s) is (are) important for the FeMoco-activation reaction.