Department of Biostatistics, University of Washington, Box 357232, Seattle, WA 98195, USA.
Stat Med. 2012 Mar 30;31(7):661-71. doi: 10.1002/sim.4275. Epub 2011 May 31.
Two common problems in assessing the accuracy of traditional Chinese medicine (TCM) doctors in detecting a particular symptom are the unknown true symptom status and the ordinal-scale of the symptom status. Wang et al. (Biostatistics 2011; DOI: 10.1093/biostatistics/kxq075) proposed a nonparametric maximum likelihood method for estimating the accuracy of different TCM doctors without a gold standard when the true symptom status is measured on an ordinal-scale. A key assumption of their work is that the diagnosis results are independent conditional on the gold standard. This assumption can be violated in many practical situations.In this paper, we propose a random effects modeling approach that extends their method to incorporate dependence structure among different tests or doctors. The proposed method is illustrated on a real data set from TCM, which contains the diagnostic results from five doctors for the same patients regarding symptoms related to Chills disease. The same data set was analyzed by Wang et al. under the conditional independence assumption. In addition, we also discuss an ad hoc test for the model fitting and a likelihood ratio test on the random effects.
评估中医医生检测特定症状准确性时,两个常见问题是未知的真实症状状态和症状状态的序数尺度。Wang 等人(Biostatistics 2011;DOI: 10.1093/biostatistics/kxq075)提出了一种非参数最大似然方法,用于在真实症状状态为序数尺度时,在没有金标准的情况下估计不同中医医生的准确性。他们工作的一个关键假设是,在金标准条件下,诊断结果是独立的。在许多实际情况下,这种假设可能会被违反。在本文中,我们提出了一种随机效应建模方法,该方法扩展了他们的方法,以纳入不同测试或医生之间的依赖结构。该方法应用于来自中医的真实数据集,其中包含五个医生对与寒战病相关的症状的相同患者的诊断结果。Wang 等人在条件独立性假设下,对相同数据集进行了分析。此外,我们还讨论了用于模型拟合的特定检验和随机效应的似然比检验。