Ciriolo M R, Desideri A, Paci M, Rotilio G
Department of Biology, Tor Vergata University of Rome, Italy.
J Biol Chem. 1990 Jul 5;265(19):11030-4.
The reconstitution of Cu,Zn-superoxide dismutase from the copper-free protein by the Cu(I).GSH complex was monitored by: (a) EPR and optical spectroscopy upon reoxidation of the enzyme-bound copper; (b) NMR spectroscopy following the broadening of the resonances of the Cu(I).GSH complex after addition of Cu-free,Zn-superoxide dismutase; and (c) NMR spectroscopy of the Cu-free,Co(II) enzyme following the appearance of the isotropically shifted resonances of the Cu(I), Co enzyme, Cu(I).GSH was found to be a very stable complex in the presence of oxygen and a more efficient copper donor to the copper-free enzyme than other low molecular weight Cu(II) complexes. In particular, 100% reconstitution was obtained with stoichiometric copper at any GSH:copper ratio between 2 and 500. Evidence was obtained for the occurrence of a Cu(I).GSH.protein intermediate in the reconstitution process. In view of the inability of copper-thionein to reconstitute Cu,Zn-superoxide dismutase and of the detection of copper.GSH complexes in copper-over-loaded hepatoma cells (Freedman, J.H., Ciriolo, M.R., and Peisach, J. (1989) J. Biol. Chem. 264, 5598-5605), Cu(I).GSH is proposed as a likely candidate for copper donation to Cu-free,Zn-superoxide dismutase in vivo.
通过以下方法监测了由无铜蛋白经Cu(I)-谷胱甘肽(GSH)复合物重构铜锌超氧化物歧化酶的过程:(a) 对酶结合铜再氧化时采用电子顺磁共振(EPR)和光学光谱法;(b) 添加无铜的锌超氧化物歧化酶后,根据Cu(I)-GSH复合物共振峰变宽情况采用核磁共振(NMR)光谱法;(c) 出现Cu(I)-钴(Co)酶的各向同性位移共振峰后,对无铜的钴(II)酶采用核磁共振光谱法。结果发现,Cu(I)-GSH在有氧存在时是一种非常稳定的复合物,并且作为无铜酶的铜供体比其他低分子量的Cu(II)复合物更有效。特别是,在GSH与铜的比例介于2至500之间的任何情况下,使用化学计量的铜均可实现100%的重构。有证据表明在重构过程中会出现Cu(I)-GSH-蛋白质中间体。鉴于铜硫蛋白无法重构铜锌超氧化物歧化酶,以及在铜过载的肝癌细胞中检测到铜-GSH复合物(弗里德曼,J.H.,西里洛,M.R.,和佩萨克,J.(1989年)《生物化学杂志》264,5598 - 5605),因此提出Cu(I)-GSH可能是体内向无铜的锌超氧化物歧化酶供铜的候选物。