Suppr超能文献

横越喜玛拉雅山脉的斑头雁(Anser indicus)迁徙飞行。

The trans-Himalayan flights of bar-headed geese (Anser indicus).

机构信息

School of Biological Sciences, Bangor University, Gwynedd, LL57 2UW, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9516-9. doi: 10.1073/pnas.1017295108. Epub 2011 May 31.

Abstract

Birds that fly over mountain barriers must be capable of meeting the increased energetic cost of climbing in low-density air, even though less oxygen may be available to support their metabolism. This challenge is magnified by the reduction in maximum sustained climbing rates in large birds. Bar-headed geese (Anser indicus) make one of the highest and most iconic transmountain migrations in the world. We show that those populations of geese that winter at sea level in India are capable of passing over the Himalayas in 1 d, typically climbing between 4,000 and 6,000 m in 7-8 h. Surprisingly, these birds do not rely on the assistance of upslope tailwinds that usually occur during the day and can support minimum climb rates of 0.8-2.2 km·h(-1), even in the relative stillness of the night. They appear to strategically avoid higher speed winds during the afternoon, thus maximizing safety and control during flight. It would seem, therefore, that bar-headed geese are capable of sustained climbing flight over the passes of the Himalaya under their own aerobic power.

摘要

飞越山脉屏障的鸟类必须能够应对在低密度空气中攀爬时增加的能量消耗,尽管可能没有更多的氧气来支持它们的新陈代谢。对于大型鸟类来说,最大持续攀爬率的降低使这一挑战更加严峻。斑头雁(Anser indicus)进行了世界上最高和最具标志性的跨山迁徙之一。我们发现,那些在印度沿海地区越冬的斑头雁能够在 1 天内飞越喜马拉雅山脉,通常在 7-8 小时内爬升到 4000-6000 米的高度。令人惊讶的是,这些鸟类并不依赖于白天通常出现的顺风的帮助,它们能够以 0.8-2.2 公里/小时的最低爬升速度飞行,即使在夜间相对静止的情况下也是如此。它们似乎有意避开下午的高速风,从而在飞行中最大限度地提高安全性和控制力。因此,斑头雁似乎能够凭借自身的有氧能力在喜马拉雅山的山口进行持续的攀爬飞行。

相似文献

1
The trans-Himalayan flights of bar-headed geese (Anser indicus).
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9516-9. doi: 10.1073/pnas.1017295108. Epub 2011 May 31.
2
The paradox of extreme high-altitude migration in bar-headed geese Anser indicus.
Proc Biol Sci. 2013 Jan 7;280(1750):20122114. doi: 10.1098/rspb.2012.2114. Epub 2012 Oct 31.
4
Do Bar-Headed Geese Train for High Altitude Flights?
Integr Comp Biol. 2017 Aug 1;57(2):240-251. doi: 10.1093/icb/icx068.
5
Maximum running speed of captive bar-headed geese is unaffected by severe hypoxia.
PLoS One. 2014 Apr 7;9(4):e94015. doi: 10.1371/journal.pone.0094015. eCollection 2014.
6
High fliers: the physiology of bar-headed geese.
Comp Biochem Physiol A Mol Integr Physiol. 2010 Jul;156(3):325-9. doi: 10.1016/j.cbpa.2010.01.016. Epub 2010 Jan 28.
7
[The geese who flew home for Christmas].
Ugeskr Laeger. 2013 Dec 2;175(49):3031-4.
8
Have wing morphology or flight kinematics evolved for extreme high altitude migration in the bar-headed goose?
Comp Biochem Physiol C Toxicol Pharmacol. 2008 Nov;148(4):324-31. doi: 10.1016/j.cbpc.2008.05.009. Epub 2008 May 27.
10
The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations.
Science. 2015 Jan 16;347(6219):250-4. doi: 10.1126/science.1258732.

引用本文的文献

1
Detour migration to circumvent the Himalayas in the Montagu's Harrier Circus pygargus.
Mov Ecol. 2025 Jun 10;13(1):40. doi: 10.1186/s40462-025-00568-z.
2
Gas exchange, oxygen transport and metabolism in high-altitude waterfowl.
Philos Trans R Soc Lond B Biol Sci. 2025 Feb 27;380(1920):20230424. doi: 10.1098/rstb.2023.0424.
3
Structure and function of the avian respiratory system.
Philos Trans R Soc Lond B Biol Sci. 2025 Feb 27;380(1920):20230435. doi: 10.1098/rstb.2023.0435.
4
Identification of multiple novel viruses in bar-headed goose feces from Tibet of China.
Front Vet Sci. 2024 Oct 9;11:1485631. doi: 10.3389/fvets.2024.1485631. eCollection 2024.
5
Migratory lifestyle carries no added overall energy cost in a partial migratory songbird.
Nat Ecol Evol. 2024 Dec;8(12):2286-2296. doi: 10.1038/s41559-024-02545-y. Epub 2024 Sep 18.
7
Autumn migration of black-necked crane () on the Qinghai-Tibetan and Yunnan-Guizhou plateaus.
Ecol Evol. 2023 Sep 7;13(9):e10492. doi: 10.1002/ece3.10492. eCollection 2023 Sep.
8
Animal movement ecology in India: insights from 2011-2021 and prospective for the future.
PeerJ. 2022 Dec 13;10:e14401. doi: 10.7717/peerj.14401. eCollection 2022.
9
Chromosome-level genome assembly of the bar-headed goose (Anser indicus).
Sci Data. 2022 Nov 3;9(1):668. doi: 10.1038/s41597-022-01801-9.
10
Linking animal migration and ecosystem processes: Data-driven simulation of propagule dispersal by migratory herbivores.
Ecol Evol. 2022 Oct 18;12(10):e9383. doi: 10.1002/ece3.9383. eCollection 2022 Oct.

本文引用的文献

1
The physiology and biomechanics of avian flight at high altitude.
Integr Comp Biol. 2006 Feb;46(1):62-71. doi: 10.1093/icb/icj008. Epub 2006 Jan 6.
2
Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose.
Mol Biol Evol. 2011 Jan;28(1):351-63. doi: 10.1093/molbev/msq205. Epub 2010 Aug 4.
4
Stress failure and high-altitude pulmonary oedema: mechanistic insights from physiology.
Eur Respir J. 2010 Mar;35(3):470-2. doi: 10.1183/09031936.00178709.
5
High fliers: the physiology of bar-headed geese.
Comp Biochem Physiol A Mol Integr Physiol. 2010 Jul;156(3):325-9. doi: 10.1016/j.cbpa.2010.01.016. Epub 2010 Jan 28.
6
Evolution of muscle phenotype for extreme high altitude flight in the bar-headed goose.
Proc Biol Sci. 2009 Oct 22;276(1673):3645-53. doi: 10.1098/rspb.2009.0947. Epub 2009 Jul 29.
7
Have wing morphology or flight kinematics evolved for extreme high altitude migration in the bar-headed goose?
Comp Biochem Physiol C Toxicol Pharmacol. 2008 Nov;148(4):324-31. doi: 10.1016/j.cbpc.2008.05.009. Epub 2008 May 27.
8
Control of breathing and adaptation to high altitude in the bar-headed goose.
Am J Physiol Regul Integr Comp Physiol. 2007 Jul;293(1):R379-91. doi: 10.1152/ajpregu.00161.2007. Epub 2007 May 9.
9
Flying high: a theoretical analysis of the factors limiting exercise performance in birds at altitude.
Respir Physiol Neurobiol. 2006 Nov;154(1-2):284-301. doi: 10.1016/j.resp.2006.02.012. Epub 2006 Mar 6.
10
Resolution of a paradox: hummingbird flight at high elevation does not come without a cost.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17731-6. doi: 10.1073/pnas.0405260101. Epub 2004 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验