Suppr超能文献

斑头雁在极高海拔迁徙的悖论。

The paradox of extreme high-altitude migration in bar-headed geese Anser indicus.

机构信息

School of Biological Sciences, University of Bangor, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.

出版信息

Proc Biol Sci. 2013 Jan 7;280(1750):20122114. doi: 10.1098/rspb.2012.2114. Epub 2012 Oct 31.

Abstract

Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

摘要

斑头雁以在世界最高峰喜马拉雅山极高海拔处迁徙飞行而闻名,在那里,氧气分压显著降低,而以耗氧量比率计算的飞行成本则大大增加。这种不匹配是矛盾的,目前尚不清楚为什么斑头雁的飞行高度会超过绝对必要的高度。此外,缺乏对高空飞行的直接实证测量。我们测试了迁徙中的斑头雁是否真的将飞行高度最小化,并利用有利的风来降低飞行成本。通过跟踪 91 只斑头雁,我们发现这些鸟类通常在喜马拉雅山谷中穿行,而不是在山顶上飞行。我们报告了南行和北行斑头雁的最大飞行高度分别为 7290 米和 6540 米,但有 95%的位置是在低于 5489 米的高度接收到的。斑头雁沿着一条比大圆(最短距离)路线长 112 公里的路线行进,过境地面速度表明它们很少受益于顺风。来自这些东部种群的斑头雁通常只飞行到它们下方地形所决定的高度,很少在有利的风中飞行。尽管如此,它们的迁徙在人类和其他哺乳动物只能在远低于其海平面最大值的水平上运作的条件下,仍然是一个巨大的挑战。

相似文献

1
The paradox of extreme high-altitude migration in bar-headed geese Anser indicus.
Proc Biol Sci. 2013 Jan 7;280(1750):20122114. doi: 10.1098/rspb.2012.2114. Epub 2012 Oct 31.
2
The trans-Himalayan flights of bar-headed geese (Anser indicus).
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9516-9. doi: 10.1073/pnas.1017295108. Epub 2011 May 31.
3
High fliers: the physiology of bar-headed geese.
Comp Biochem Physiol A Mol Integr Physiol. 2010 Jul;156(3):325-9. doi: 10.1016/j.cbpa.2010.01.016. Epub 2010 Jan 28.
4
Have wing morphology or flight kinematics evolved for extreme high altitude migration in the bar-headed goose?
Comp Biochem Physiol C Toxicol Pharmacol. 2008 Nov;148(4):324-31. doi: 10.1016/j.cbpc.2008.05.009. Epub 2008 May 27.
6
Do Bar-Headed Geese Train for High Altitude Flights?
Integr Comp Biol. 2017 Aug 1;57(2):240-251. doi: 10.1093/icb/icx068.
8
Maximum running speed of captive bar-headed geese is unaffected by severe hypoxia.
PLoS One. 2014 Apr 7;9(4):e94015. doi: 10.1371/journal.pone.0094015. eCollection 2014.
9
Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds.
Am J Physiol Regul Integr Comp Physiol. 2009 Oct;297(4):R1066-74. doi: 10.1152/ajpregu.00241.2009. Epub 2009 Aug 5.
10
High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.
J Exp Biol. 2013 Jun 15;216(Pt 12):2172-5. doi: 10.1242/jeb.085282. Epub 2013 Mar 7.

引用本文的文献

1
Evolutionary ecophysiology in extreme environments under a global change scenario.
Conserv Physiol. 2025 Aug 11;13(1):coaf059. doi: 10.1093/conphys/coaf059. eCollection 2025.
2
Detour migration to circumvent the Himalayas in the Montagu's Harrier Circus pygargus.
Mov Ecol. 2025 Jun 10;13(1):40. doi: 10.1186/s40462-025-00568-z.
3
Identification of multiple novel viruses in bar-headed goose feces from Tibet of China.
Front Vet Sci. 2024 Oct 9;11:1485631. doi: 10.3389/fvets.2024.1485631. eCollection 2024.
4
Chromosome-level genome assembly of the bar-headed goose (Anser indicus).
Sci Data. 2022 Nov 3;9(1):668. doi: 10.1038/s41597-022-01801-9.
6
Introduction to the theme issue: Measuring physiology in free-living animals.
Philos Trans R Soc Lond B Biol Sci. 2021 Aug 2;376(1830):20200210. doi: 10.1098/rstb.2020.0210. Epub 2021 Jun 14.
8
The New Era of Physio-Logging and Their Grand Challenges.
Front Physiol. 2021 Mar 30;12:669158. doi: 10.3389/fphys.2021.669158. eCollection 2021.
9
Shorebirds wintering in Southeast Asia demonstrate trans-Himalayan flights.
Sci Rep. 2020 Dec 11;10(1):21232. doi: 10.1038/s41598-020-77897-z.
10
Physiological Genomics of Adaptation to High-Altitude Hypoxia.
Annu Rev Anim Biosci. 2021 Feb 16;9:149-171. doi: 10.1146/annurev-animal-072820-102736. Epub 2020 Nov 23.

本文引用的文献

1
2
Elevated performance: the unique physiology of birds that fly at high altitudes.
J Exp Biol. 2011 Aug 1;214(Pt 15):2455-62. doi: 10.1242/jeb.052548.
3
Point: high altitude is for the birds!
J Appl Physiol (1985). 2011 Nov;111(5):1514-5. doi: 10.1152/japplphysiol.00821.2011. Epub 2011 Jul 7.
4
Human responses to extreme altitudes.
Integr Comp Biol. 2006 Feb;46(1):25-34. doi: 10.1093/icb/icj005. Epub 2006 Jan 6.
5
The trans-Himalayan flights of bar-headed geese (Anser indicus).
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9516-9. doi: 10.1073/pnas.1017295108. Epub 2011 May 31.
7
Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.
J Exp Biol. 2010 Dec 15;213(Pt 24):4125-36. doi: 10.1242/jeb.048181.
9
Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose.
Mol Biol Evol. 2011 Jan;28(1):351-63. doi: 10.1093/molbev/msq205. Epub 2010 Aug 4.
10
High fliers: the physiology of bar-headed geese.
Comp Biochem Physiol A Mol Integr Physiol. 2010 Jul;156(3):325-9. doi: 10.1016/j.cbpa.2010.01.016. Epub 2010 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验