Centre de Recherche Université Laval Robert-Giffard, Université Laval, Québec, Canada.
PLoS One. 2011;6(5):e19928. doi: 10.1371/journal.pone.0019928. Epub 2011 May 24.
In vivo non-linear optical microscopy has been essential to advance our knowledge of how intact biological systems work. It has been particularly enabling to decipher fast spatiotemporal cellular dynamics in neural networks. The power of the technique stems from its optical sectioning capability that in turn also limits its application to essentially immobile tissue. Only tissue not affected by movement or in which movement can be physically constrained can be imaged fast enough to conduct functional studies at high temporal resolution. Here, we show dynamic two-photon Ca(2+) imaging in the spinal cord of a living rat at millisecond time scale, free of motion artifacts using an optical stabilization system. We describe a fast, non-contact adaptive movement compensation approach, applicable to rough and weakly reflective surfaces, allowing real-time functional imaging from intrinsically moving tissue in live animals. The strategy involves enslaving the position of the microscope objective to that of the tissue surface in real-time through optical monitoring and a closed feedback loop. The performance of the system allows for efficient image locking even in conditions of random or irregular movements.
在体非线性光学显微镜对于深入了解完整生物系统的工作方式至关重要。它在破译神经网络中快速的时空细胞动力学方面特别有效。该技术的强大之处在于其光学切片能力,而这反过来又限制了其在基本上不可移动的组织中的应用。只有不受运动影响或运动可以通过物理约束的组织才能被快速成像,以便在高时间分辨率下进行功能研究。在这里,我们展示了使用光学稳定系统,在活鼠的脊髓中以毫秒时间尺度进行动态双光子 Ca(2+)成像,没有运动伪影。我们描述了一种快速、非接触自适应运动补偿方法,适用于粗糙和弱反射表面,允许对活体动物中内在运动组织进行实时功能成像。该策略涉及通过光学监测和闭环反馈实时将显微镜物镜的位置锁定到组织表面的位置。即使在随机或不规则运动的情况下,该系统的性能也允许高效的图像锁定。