Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel.
Phys Med Biol. 2020 Apr 6;65(7):075007. doi: 10.1088/1361-6560/ab7631.
Intravital imaging of brain vasculature through the intact cranium in vivo is based on the evolution of the fluorescence intensity and provides an ability to characterize various physiological processes in the natural context of cellular resolution. The involuntary motions of the examined subjects often limit in vivo non-invasive functional optical imaging. Conventional imaging diagnostic modalities encounter serious difficulties in correction of artificial motions, associated with fast high dynamics of the intensity values in the collected image sequences, when a common reference cannot be provided. In the current report, we introduce an alternative solution based on a time-space Fourier transform method so-called K-Omega. We demonstrate that the proposed approach is effective for image stabilization of fast dynamic image sequences and can be used autonomously without supervision and assignation of a reference image.
在体颅内脑脉管系统的活体无创成像基于荧光强度的演变,并提供了在细胞分辨率的自然背景下对各种生理过程进行特征化的能力。被检查对象的不自主运动常常限制了活体非侵入性功能光学成像。在无法提供通用参考的情况下,常规成像诊断模态在对与收集的图像序列中强度值的快速高动力学相关的人工运动进行校正时会遇到严重困难。在本报告中,我们引入了一种基于时-空傅里叶变换方法的替代解决方案,即 K-Omega。我们证明了该方法对于快速动态图像序列的图像稳定是有效的,并且可以在没有监督和参考图像指定的情况下自主使用。