Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
IEEE Trans Med Imaging. 2011 Sep;30(9):1591-604. doi: 10.1109/TMI.2011.2134865. Epub 2011 May 31.
Dynamic fluorescence diffuse optical tomography (D-FDOT) is important for drug delivery research. However, the low spatial resolution of FDOT and the complex kinetics of drug limit the ability of D-FDOT in resolving metabolic processes of drug throughout whole body of small animals. In this paper, we propose an independent component analysis (ICA)-based method to perform D-FDOT studies. When applied to D-FDOT images, ICA not only generates a set of independent components (ICs) which can illustrate functional structures with different kinetic behaviors, but also provides a set of associated time courses (TCs) which can represent normalized time courses of drug in corresponding functional structures. Further, the drug concentration in specific functional structure at different time points can be recovered by an inverse ICA transformation. To evaluate the performance of the proposed algorithm in the study of drug kinetics at whole-body level, simulation study and phantom experiment are both performed on a full-angle FDOT imaging system with line-shaped excitation pattern. In simulation study, the nanoparticle delivery of indocynaine green (ICG) throughout whole body of a digital mouse is simulated and imaged. In phantom experiment, four tubes containing different ICG concentrations are imaged and used to imitate the uptake and excretion of ICG in organs. The results suggest that we can not only illustrate ICG distributions in different functional structures, but also recover ICG concentrations in specific functional structure at different time points, when ICA is applied to D-FDOT images.
动态荧光漫射光学断层成像(D-FDOT)在药物输送研究中很重要。然而,FDOT 的空间分辨率低和药物的复杂动力学限制了 D-FDOT 在解析小动物全身药物代谢过程的能力。在本文中,我们提出了一种基于独立成分分析(ICA)的方法来进行 D-FDOT 研究。当应用于 D-FDOT 图像时,ICA 不仅生成了一组可以说明具有不同动力学行为的功能结构的独立成分(ICs),还提供了一组可以表示相应功能结构中药物归一化时间过程的相关时间过程(TCs)。此外,可以通过逆 ICA 变换恢复特定功能结构中在不同时间点的药物浓度。为了评估该算法在全身药物动力学研究中的性能,在具有线形状激发模式的全角度 FDOT 成像系统上进行了模拟研究和体模实验。在模拟研究中,模拟并成像了整个数字小鼠体内吲哚菁绿(ICG)的纳米颗粒输送。在体模实验中,对四个含有不同 ICG 浓度的管进行成像,以模拟 ICG 在器官中的摄取和排泄。结果表明,当 ICA 应用于 D-FDOT 图像时,我们不仅可以说明不同功能结构中的 ICG 分布,还可以恢复特定功能结构中不同时间点的 ICG 浓度。