Suppr超能文献

大肠杆菌和人 tRNA 鸟嘌呤转糖基酶对差异杂环碱基底物的识别及喋呤抑制作用。

Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases.

机构信息

Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, United States.

出版信息

Biochem Biophys Res Commun. 2011 Jun 24;410(1):34-9. doi: 10.1016/j.bbrc.2011.05.100. Epub 2011 May 24.

Abstract

tRNA-guanine transglycosylases (TGTs) are responsible for incorporating 7-deazaguanine-modified bases into certain tRNAs in eubacteria (preQ(1)), eukarya (queuine) and archaea (preQ(0)). In each kingdom, the specific modified base is different. We have found that the eubacterial and eukaryal TGTs have evolved to be quite specific for their cognate heterocyclic base and that Cys145 (Escherichia coli) is important in recognizing the amino methyl side chain of preQ(1) (Chen et al., Nuc. Acids Res. 39 (2011) 2834 [15]). A series of mutants of the E. coli TGT have been constructed to probe the role of three other active site amino acids in the differential recognition of heterocyclic substrates. These mutants have also been used to probe the differential inhibition of E. coli versus human TGTs by pteridines. The results indicate that mutation of these active site amino acids can "open up" the active site, allowing for the binding of competitive pteridine inhibitors. However, even the "best" of these mutants still does not recognize queuine at concentrations up to 50μM, suggesting that other changes are necessary to adapt the eubacterial TGT to incorporate queuine into RNA. The pteridine inhibition results are consistent with an earlier hypothesis that pteridines may regulate eukaryal TGT activity (Jacobson et al., Nuc. Acids Res. 9 (1981) 2351 [8]).

摘要

tRNA-鸟嘌呤转糖基酶(TGTs)负责在真细菌(预 Q(1))、真核生物(Queuine)和古菌(预 Q(0))中将 7-脱氮鸟嘌呤修饰碱基掺入特定的 tRNA 中。在每个王国中,特定的修饰碱基都不同。我们发现,真细菌和真核生物的 TGT 已经进化得对其同源杂环碱基非常特异,并且 Cys145(大肠杆菌)在识别预 Q(1)的氨基甲基侧链方面很重要(Chen 等人,Nuc. Acids Res. 39 (2011) 2834 [15])。已经构建了一系列大肠杆菌 TGT 的突变体,以探究三个其他活性位点氨基酸在杂环底物的差异识别中的作用。这些突变体也被用于探究 pteridines 对大肠杆菌与人类 TGT 的差异抑制作用。结果表明,这些活性位点氨基酸的突变可以“打开”活性位点,允许结合竞争性 pteridine 抑制剂。然而,即使是这些“最佳”的突变体仍然不能在高达 50μM 的浓度下识别 Queuine,这表明需要进行其他改变才能使真细菌 TGT 适应将 Queuine 掺入 RNA 中。这些 pteridine 抑制结果与早先的假设一致,即 pteridines 可能调节真核 TGT 活性(Jacobson 等人,Nuc. Acids Res. 9 (1981) 2351 [8])。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2951/3124622/2fe0d85ab002/nihms-300066-f0001.jpg

相似文献

本文引用的文献

7
Transglycosylation: a mechanism for RNA modification (and editing?).转糖基化作用:一种RNA修饰(及编辑?)机制
Bioorg Chem. 2005 Jun;33(3):229-51. doi: 10.1016/j.bioorg.2005.01.001. Epub 2005 Feb 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验