School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
Nucleic Acids Res. 2021 May 21;49(9):4877-4890. doi: 10.1093/nar/gkab289.
Base-modification can occur throughout a transfer RNA molecule; however, elaboration is particularly prevalent at position 34 of the anticodon loop (the wobble position), where it functions to influence protein translation. Previously, we demonstrated that the queuosine modification at position 34 can be substituted with an artificial analogue via the queuine tRNA ribosyltransferase enzyme to induce disease recovery in an animal model of multiple sclerosis. Here, we demonstrate that the human enzyme can recognize a very broad range of artificial 7-deazaguanine derivatives for transfer RNA incorporation. By contrast, the enzyme displays strict specificity for transfer RNA species decoding the dual synonymous NAU/C codons, determined using a novel enzyme-RNA capture-release method. Our data highlight the broad scope and therapeutic potential of exploiting the queuosine incorporation pathway to intentionally engineer chemical diversity into the transfer RNA anticodon.
碱基修饰可以发生在整个转移 RNA 分子中;然而,在反密码环的 34 位(摆动位置)特别常见,它的功能是影响蛋白质翻译。之前,我们证明可以通过 Queuosine tRNA 核糖基转移酶将位置 34 的 Queuosine 修饰用人工类似物替代,从而在多发性硬化症的动物模型中诱导疾病恢复。在这里,我们证明人类酶可以识别非常广泛的人工 7-脱氮鸟嘌呤衍生物,用于转移 RNA 的掺入。相比之下,该酶对解码双同义 NAU/C 密码子的转移 RNA 种类表现出严格的特异性,这是使用一种新的酶 RNA 捕获释放方法确定的。我们的数据突出了利用 Queuosine 掺入途径将化学多样性有意引入转移 RNA 反密码子的广泛范围和治疗潜力。