Suppr超能文献

背越式跳高:用三变量模型预测成绩。

Fosbury flop: predicting performance with a three-variable model.

机构信息

UR CIAMS-Motor Control and Perception Group, Sport Sciences Department, University of Paris XI, Orsay Cedex, France.

出版信息

J Strength Cond Res. 2011 Aug;25(8):2143-50. doi: 10.1519/JSC.0b013e3181f0aab5.

Abstract

The goal of this study is to (a) find the most predictive anthropometric factors, (b) check the predictability of a new jumping motor test, and (c) predict Fosbury-flop (FFP) performance by using a multiregression analysis. The participants of this study were 49 girls (age 13.6 ± 0.48 years; height = 1.61 ± 0.07 m) and 68 boys (age 13.6 ± 0.47 years; height = 1.64 ± 0.10 m). We measured the height, the sitting height), the highest position touched by the hand in a standing position (HEIGHTARM), the highest position touched by the hand during a running 1-leg vertical jump with a semirestricted curved run-up (HMAX), and the best performance in the FFP. We then calculated the leg length (LEGLENGTH), the skelic index (ratio of legs length to the abdomen length, SKEL), the vertical performance (VP, difference between HMAX and HEIGHTARM). The ability level was deducted from the difference between (LEGLENGTH + VP) and FFP. Pearson correlation coefficients were calculated, and a multiple-regression analysis technique was applied to find the most predictive model (p < 0.05). The FFP was correlated with standing height (HEIGHT; r = 0.398; p < 0.05), HMAX (r = 0.707; p < 0.0005), ABILITY (r = 0.391; p < 0.005) but not with SKEL (r = 0.161; p = 0.01). The best multiple-regression model included HEIGHT, HMAX, and ABILITY with a high level of prediction (r2 = 0.94). In conclusion, the FFP performance can be predicted with equation: FFP = -0.618 HEIGHT + 0.898 HMAX + 0.669 ABILITY - 0.08. This equation is quite similar for both sexes, showing that 13-year-old girls and boys use the same method to jump high, which implies that the way to increase coordination or lower limb strength during training can be the same for junior boys and girls in high jump.

摘要

本研究的目的是

(a) 找出最具预测性的人体测量学因素,(b) 检验新的跳跃运动测试的可预测性,以及 (c) 通过多元回归分析预测背越式跳高(FFP)成绩。本研究的参与者包括 49 名女孩(年龄 13.6±0.48 岁;身高=1.61±0.07m)和 68 名男孩(年龄 13.6±0.47 岁;身高=1.64±0.10m)。我们测量了身高、坐高、站立时手能触及的最高位置(HEIGHTARM)、助跑半限制弧形跑姿下 1 腿垂直跳时手能触及的最高位置(HMAX)和 FFP 的最佳表现。然后,我们计算了腿长(LEGLENGTH)、骨骼指数(腿长与腹长的比值,SKEL)、垂直表现(VP,HMAX 与 HEIGHTARM 之间的差值)。能力水平从(LEGLENGTH+VP)与 FFP 的差值中扣除。计算了 Pearson 相关系数,并应用多元回归分析技术寻找最具预测性的模型(p<0.05)。FFP 与站立身高(HEIGHT;r=0.398;p<0.05)、HMAX(r=0.707;p<0.0005)呈正相关,与 ABILITY(r=0.391;p<0.005)呈正相关,但与 SKEL(r=0.161;p=0.01)无关。最佳多元回归模型包括 HEIGHT、HMAX 和 ABILITY,具有较高的预测水平(r2=0.94)。结论:FFP 表现可以通过以下公式预测:FFP=-0.618 HEIGHT+0.898 HMAX+0.669 ABILITY-0.08。这个公式对于男女都非常相似,这表明 13 岁的女孩和男孩使用相同的方法跳得更高,这意味着在训练中提高协调性或下肢力量的方法对于男女青少年跳高来说是相同的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验