IEEE Trans Image Process. 2011 Nov;20(11):3296-301. doi: 10.1109/TIP.2011.2159231. Epub 2011 Jun 9.
Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier-Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time.
尽管过去十年见证了微阵列技术取得了很大的改进,但这项技术的所有主要阶段,包括图像处理,仍需要许多重大发展。文献中已经提出了一些微阵列图像处理的硬件实现,并被证明是目前可用软件系统的有前途的替代方案。然而,这些提出的方法的主要缺点是不适合以现实的方式对基因点进行定量处理,而不考虑图像表面。我们在本文中的目的是提出一种使用细胞神经网络的新图像重建算法,该算法可以解决纳维-斯托克斯方程。该算法为估计基因斑点区域内的背景信号提供了一种稳健的方法。使用 Matlab 的 MATCNN 工具箱来测试所提出的方法。进行了定量比较,即在客观标准方面,将我们的方法与其他一些可用方法进行了比较。结果表明,所提出的算法能够以非常高效的方式在完全自动化的方式下提供高度准确和现实的测量结果。