NMR Research Unit, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
J Neurol. 2011 Dec;258(12):2113-27. doi: 10.1007/s00415-011-6117-7. Epub 2011 Jun 10.
Energy failure is an emerging concept in multiple sclerosis research. Pathological studies have indicated that axonal modifications in response to demyelination may increase neuronal energy demand. At the same time, soluble mediators of inflammation may impair mitochondrial function, and brain perfusion may also be decreased. Insufficient energy production for demand can lead to intracellular sodium accumulation, calcium influx and cell death. Magnetic resonance (MR) is a promising technique to investigate these pathology driven hypotheses in vivo. MR spectroscopy can inform on mitochondrial function with measures of N acetyl aspartate (NAA), and requirement for extra-mitochondrial glycolysis via measurement of lactate. MR measurement of phosphorous ((31)P) and sodium ((23)Na) allows direct assessment of energy availability and axonal sodium handling. MR techniques for imaging perfusion can quantify oxygen delivery and nascent MR techniques that exploit the paramagnetism of deoxyhaemaglobin may be able to quantify oxygen utilization. This report reviews the physical principles underlying these techniques, their implementation for human in vivo imaging, and their application in neurological conditions with an emphasis on multiple sclerosis. Combination of these techniques to obtain a comprehensive picture of oxygen delivery, energy production and utilization may provide new insights into the pathophysiology of multiple sclerosis and may provide outcome measures for trials of novel treatments.
能量衰竭是多发性硬化症研究中的一个新兴概念。病理学研究表明,脱髓鞘反应中的轴突改变可能会增加神经元的能量需求。同时,炎症的可溶性介质可能会损害线粒体功能,脑灌注也可能会降低。如果能量产生不能满足需求,就会导致细胞内钠离子积累、钙离子内流和细胞死亡。磁共振(MR)是一种有前途的技术,可以在体内研究这些由病理学驱动的假说。MR 波谱可以通过测量 N-乙酰天冬氨酸(NAA)来提供有关线粒体功能的信息,并通过测量乳酸来了解额外的线粒体糖酵解的需求。磷((31)P)和钠((23)Na)的 MR 测量可以直接评估能量可用性和轴突钠处理。用于成像灌注的 MR 技术可以定量氧输送,并且利用脱氧血红蛋白顺磁性的新兴 MR 技术可能能够定量氧利用。本报告回顾了这些技术的物理原理、它们在人体体内成像中的实施情况以及它们在多发性硬化症等神经疾病中的应用,重点介绍了多发性硬化症。将这些技术结合起来,获得氧输送、能量产生和利用的综合情况,可能会为多发性硬化症的病理生理学提供新的见解,并为新型治疗方法的试验提供疗效评估指标。