Barkhof F, van Walderveen M
Magnetic Resonance Centre for Multiple Sclerosis Research, University Hospital Vrije Universiteit, Amsterdam, The Netherlands.
Philos Trans R Soc Lond B Biol Sci. 1999 Oct 29;354(1390):1675-86. doi: 10.1098/rstb.1999.0511.
Nuclear magnetic resonance (NMR) imaging is an established diagnostic medium to diagnose multiple sclerosis (MS). In clinically stable MS patients, NMR detects silent disease activity, which is the reason why it is being used to monitor treatment trials, in which it serves as a secondary outcome parameter. The absence of a clear correlation with clinical disability, the so-called 'clinico-radiological' paradox, and the poor predictive value of NMR prohibit the use of NMR as a primary outcome parameter in clinical trials. This is--among others--a result of the limited histopathological specificity of conventional, or 'T2-weighted' imaging, the most commonly used NMR technique. In this paper we review additional NMR techniques with higher tissue specificity, most of which show marked heterogeneity within NMR-visible lesions, reflecting histopathological heterogeneity. Gadolinium enhancement identifies the early inflammatory phase of lesion development, with active phagocytosis by macrophages. Persistently hypointense lesions on T1-weighted images ('black holes') relate to axonal loss and matrix destruction, and show a better correlation with clinical disability. Marked prolongation of T1 relaxation time correlates with enlargement of the extracellular space, which occurs as a result of axonal loss or oedema. Axonal viability can also be measured using the concentration of N-acetyl aspartate (NAA) using NMR spectroscopy; this technique is also capable of showing lactate and mobile lipids in lesions with active macrophages. The multi-exponential behaviour of T2 relaxation time in brain white matter provides a tool to monitor the myelin water component in MS lesions (short T2 component) as well as the expansion of the extracellular space (long T2 component). Chemical exchange with macromolecules (e.g. myelin) can be measured using magnetization transfer imaging, and correlates with demyelination, axonal loss and matrix destruction. Increased water diffusion has been found in MS lesions (relating to oedema and an expanded extracellular space) and a loss of anisotropy may indicate a loss of fibre orientation (compatible with demyelination). Apart from the histopathological heterogeneity within focal MS lesions, the normal-appearing white matter shows definite abnormalities with all quantifiable NMR techniques. A decrease in the concentration of NAA, decreased magnetization transfer values and prolonged T1 relaxation time values are probably all related to microscopic abnormalities, including axonal damage. This 'invisible' lesion load may constitute a significant proportion of the total lesion load but is not visible on conventional NMR. Similarly, mechanisms for clinical recovery exist, which are not distinguished using MR imaging. Therefore, it is highly unlikely that the clinico-radiological paradox will ever be solved completely. However, NMR provides an opportunity to sequentially measure tissue changes in vivo. Using MR parameters with (presumed) histopathological specificity, the development of (irreversible) tissue damage can be monitored, which perhaps allows the identification of factors that determine lesional outcome in MS. Since the absence of severe tissue destruction is prognostically favourable, NMR monitoring of the extent to which such changes can be prevented by treatment will ultimately benefit the selection of future treatment strategies.
核磁共振(NMR)成像已成为诊断多发性硬化症(MS)的一种既定诊断手段。在临床病情稳定的MS患者中,NMR可检测到无症状性疾病活动,这就是它被用于监测治疗试验的原因,在这些试验中它作为次要结局参数。NMR与临床残疾缺乏明确的相关性,即所谓的“临床-放射学”悖论,以及其预测价值不佳,这使得NMR在临床试验中无法作为主要结局参数使用。这在很大程度上是由于常规的或“T2加权”成像(最常用的NMR技术)的组织病理学特异性有限所致。在本文中,我们回顾了具有更高组织特异性的其他NMR技术,其中大多数在NMR可见病变内显示出明显的异质性,反映了组织病理学异质性。钆增强可识别病变发展的早期炎症阶段,此时巨噬细胞进行活跃的吞噬作用。T1加权图像上持续低信号的病变(“黑洞”)与轴突丢失和基质破坏有关,并且与临床残疾的相关性更好。T1弛豫时间的显著延长与细胞外间隙扩大相关,这是轴突丢失或水肿的结果。轴突活力也可以使用NMR波谱法通过测量N-乙酰天门冬氨酸(NAA)的浓度来测定;该技术还能够显示有活跃巨噬细胞的病变中的乳酸和可移动脂质。脑白质中T2弛豫时间的多指数行为提供了一种工具,可用于监测MS病变中的髓磷脂水成分(短T2成分)以及细胞外间隙的扩大(长T2成分)。与大分子(如髓磷脂)的化学交换可以使用磁化传递成像来测量,并且与脱髓鞘、轴突丢失和基质破坏相关。在MS病变中已发现水扩散增加(与水肿和扩大的细胞外间隙有关),而各向异性的丧失可能表明纤维方向的丧失(与脱髓鞘一致)。除了局灶性MS病变内的组织病理学异质性外,外观正常的白质在所有可量化的NMR技术下均显示出明确的异常。NAA浓度降低、磁化传递值降低和T1弛豫时间值延长可能都与微观异常有关,包括轴突损伤。这种“不可见”的病变负荷可能占总病变负荷的很大一部分,但在传统NMR上不可见。同样,存在临床恢复的机制,但使用磁共振成像无法区分。因此,临床-放射学悖论极不可能完全得到解决。然而,NMR提供了一个在体内顺序测量组织变化的机会。使用具有(假定的)组织病理学特异性的磁共振参数,可以监测(不可逆的)组织损伤的发展,这或许能够识别决定MS病变结局的因素。由于没有严重的组织破坏在预后方面是有利的,通过NMR监测治疗能够预防这种变化的程度最终将有助于未来治疗策略的选择。