Suppr超能文献

基于支持向量机的中药药效预测模型用于寻找有效部位和成分:以脑得生方为例。

A support vector machine based pharmacodynamic prediction model for searching active fraction and ingredients of herbal medicine: Naodesheng prescription as an example.

机构信息

School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.

出版信息

J Pharm Biomed Anal. 2011 Sep 10;56(2):443-7. doi: 10.1016/j.jpba.2011.05.010. Epub 2011 May 17.

Abstract

The complex chemical composition of herbal medicine leads to the lack of appropriate method for identifying active compounds and optimizing the formulation of herbal medicine. One of the most commonly used method is bioassay-guided fractionation. However, if the herbal medicine was divided into many fractions, it would cost much money and time in carrying out such a full bioassay. So, can we just perform the bioassay of a few fractions, and then develop a method to predict the bioactivities of other fractions? This study is designed to try to answer the question. In this work, a support vector machine (SVM) pharmacodynamic prediction model was introduced to search active fraction and ingredients of Naodesheng prescription. The prescription was first divided into five extracts, yielding a total of 2⁵=32 combinations. Anti-platelet aggregation experiment with SD rats was just carried out on 16 combinations. The effects of the remained 32-16=16 combinations were then predicted by the SVM model. The prediction quality was evaluated by both the rigorous jackknife test and the independent dataset validation test. Furthermore, the present method was compared with the frequently used MLR, PCR and PLSR. The present method outperforms the other 3 methods, yielding: RMSECV=2.40, R=0.895 by the jackknife test and RMSEP=7.41, R=0.910 by the independent dataset test. It indicates that the SVM prediction model has good accuracy and generalization ability. The active fraction and ingredients of Naodesheng prescription were then predicted by the model. It is believed that the present model can be extended to help search the active fraction and ingredients of other herbal medicines.

摘要

草药的复杂化学成分导致缺乏识别活性化合物和优化草药配方的适当方法。最常用的方法之一是基于生物测定的分步分离。然而,如果将草药分成许多部分,那么进行全面的生物测定会花费大量的金钱和时间。那么,我们能否只对少数几个部分进行生物测定,然后开发一种方法来预测其他部分的生物活性呢?本研究旨在尝试回答这个问题。在这项工作中,引入了支持向量机(SVM)药效预测模型来搜索脑得生方的有效部分和成分。该处方首先被分为五份提取物,总共产生了 2⁵=32 种组合。仅对 16 种组合进行了抗血小板聚集实验。然后通过 SVM 模型预测其余 32-16=16 种组合的效果。通过严格的刀切检验和独立数据集验证检验来评估预测质量。此外,还将本方法与常用的 MLR、PCR 和 PLSR 进行了比较。本方法优于其他 3 种方法,刀切检验的 RMSECV=2.40,R=0.895,独立数据集检验的 RMSEP=7.41,R=0.910。这表明 SVM 预测模型具有良好的准确性和泛化能力。然后通过该模型预测脑得生方的有效部分和成分。相信本模型可以扩展到帮助搜索其他草药的有效部分和成分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验