Suppr超能文献

基于定量构效关系从色谱图预测黄芪对CD80表达的免疫调节作用

Prediction of Radix Astragali Immunomodulatory Effect of CD80 Expression from Chromatograms by Quantitative Pattern-Activity Relationship.

作者信息

Ng Michelle Chun-Har, Lau Tsui-Yan, Fan Kei, Xu Qing-Song, Poon Josiah, Poon Simon K, Lam Mary K, Chau Foo-Tim, Sze Daniel Man-Yuen

机构信息

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.

Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.

出版信息

Biomed Res Int. 2017;2017:3923865. doi: 10.1155/2017/3923865. Epub 2017 Feb 28.

Abstract

The current use of a single chemical component as the representative quality control marker of herbal food supplement is inadequate. In this CD80-Quantitative-Pattern-Activity-Relationship (QPAR) study, we built a bioactivity predictive model that can be applicable for complex mixtures. Through integrating the chemical fingerprinting profiles of the immunomodulating herb (RA) extracts, and their related biological data of immunological marker CD80 expression on dendritic cells, a chemometric model using the Elastic Net Partial Least Square (EN-PLS) algorithm was established. The EN-PLS algorithm increased the biological predictive capability with lower value of RMSEP (11.66) and higher values of (0.55) when compared to the standard PLS model. This CD80-QPAR platform provides a useful predictive model for unknown RA extract's bioactivities using the chemical fingerprint inputs. Furthermore, this bioactivity prediction platform facilitates identification of key bioactivity-related chemical components within complex mixtures for future drug discovery and understanding of the batch-to-batch consistency for quality clinical trials.

摘要

目前将单一化学成分用作草药食品补充剂的代表性质量控制标志物是不够的。在这项CD80定量模式-活性关系(QPAR)研究中,我们构建了一个可适用于复杂混合物的生物活性预测模型。通过整合免疫调节草药(RA)提取物的化学指纹图谱及其在树突状细胞上免疫标志物CD80表达的相关生物学数据,建立了一种使用弹性网络偏最小二乘法(EN-PLS)算法的化学计量学模型。与标准PLS模型相比,EN-PLS算法提高了生物预测能力,RMSEP值较低(11.66), 值较高(0.55)。这个CD80-QPAR平台提供了一个有用的预测模型,可利用化学指纹输入预测未知RA提取物的生物活性。此外,这个生物活性预测平台有助于识别复杂混合物中与生物活性相关的关键化学成分,以用于未来的药物发现,并有助于理解质量临床试验中的批次间一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5154/5350422/82a44888cb2b/BMRI2017-3923865.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验