Suppr超能文献

发展和验证大气-植被-土壤 HTO 输运和 OBT 形成模型。

Development and validation of a dynamical atmosphere-vegetation-soil HTO transport and OBT formation model.

机构信息

Research Group for Environmental Science, Division of Environment and Radiation, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Japan.

出版信息

J Environ Radioact. 2011 Sep;102(9):813-23. doi: 10.1016/j.jenvrad.2011.05.007. Epub 2011 Jun 12.

Abstract

A numerical model simulating transport of tritiated water (HTO) in atmosphere-soil-vegetation system, and, accumulation of organically bound tritium (OBT) in vegetative leaves was developed. Characteristic of the model is, for calculating tritium transport, it incorporates a dynamical atmosphere-soil-vegetation model (SOLVEG-II) that calculates transport of heat and water, and, exchange of CO(2). The processes included for calculating tissue free water tritium (TFWT) in leaves are HTO exchange between canopy air and leaf cellular water, root uptake of aqueous HTO in soil, photosynthetic assimilation of TFWT into OBT, and, TFWT formation from OBT through respiration. Tritium fluxes at the last two processes are input to a carbohydrate compartment model in leaves that calculates OBT translocation from leaves and allocation in them, by using photosynthesis and respiration rate in leaves. The developed model was then validated through a simulation of an existing experiment of acute exposure of grape plants to atmospheric HTO. Calculated TFWT concentration in leaves increased soon after the start of HTO exposure, reaching to equilibrium with the atmospheric HTO within a few hours, and then rapidly decreased after the end of the exposure. Calculated non-exchangeable OBT amount in leaves linearly increased during the exposure, and after the exposure, rapidly decreased in daytime, and, moderately nighttime. These variations in the calculated TFWT concentrations and OBT amounts, each mainly controlled by HTO exchange between canopy air and leaf cellular water and by carbohydrates translocation from leaves, fairly agreed with the observations within average errors of a factor of two.

摘要

开发了一个数值模型,用于模拟氚水(HTO)在大气-土壤-植被系统中的传输,以及植物叶片中有机结合氚(OBT)的积累。该模型的特点是,为了计算氚的传输,它结合了一个动态的大气-土壤-植被模型(SOLVEG-II),该模型计算热和水的传输以及 CO2的交换。用于计算叶片组织游离氚(TFWT)的过程包括冠层空气与叶细胞水之间的 HTO 交换、土壤中水溶液 HTO 的根部吸收、TFWT 通过光合作用同化到 OBT 中,以及 OBT 通过呼吸形成 TFWT。后两个过程的氚通量输入到叶片中的碳水化合物区室模型中,该模型通过使用叶片中的光合作用和呼吸速率来计算 OBT 从叶片中的转运和分配。然后通过模拟葡萄植物对大气 HTO 的急性暴露的现有实验来验证开发的模型。暴露于 HTO 后,叶片中的计算 TFWT 浓度很快增加,在几个小时内达到与大气 HTO 的平衡,然后在暴露结束后迅速下降。暴露期间,叶片中非交换性 OBT 数量线性增加,暴露后,白天迅速下降,夜间适度下降。这些计算的 TFWT 浓度和 OBT 量的变化,主要由冠层空气与叶细胞水之间的 HTO 交换和叶片中碳水化合物的转运控制,与观察结果在两倍左右的平均误差范围内相当吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验