Suppr超能文献

开展间接治疗比较和网络荟萃分析研究:ISPOR 间接治疗比较良好实践工作组报告:第 2 部分。

Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2.

出版信息

Value Health. 2011 Jun;14(4):429-37. doi: 10.1016/j.jval.2011.01.011.

Abstract

Evidence-based health care decision making requires comparison of all relevant competing interventions. In the absence of randomized controlled trials involving a direct comparison of all treatments of interest, indirect treatment comparisons and network meta-analysis provide useful evidence for judiciously selecting the best treatment(s). Mixed treatment comparisons, a special case of network meta-analysis, combine direct evidence and indirect evidence for particular pairwise comparisons, thereby synthesizing a greater share of the available evidence than traditional meta-analysis. This report from the International Society for Pharmacoeconomics and Outcomes Research Indirect Treatment Comparisons Good Research Practices Task Force provides guidance on technical aspects of conducting network meta-analyses (our use of this term includes most methods that involve meta-analysis in the context of a network of evidence). We start with a discussion of strategies for developing networks of evidence. Next we briefly review assumptions of network meta-analysis. Then we focus on the statistical analysis of the data: objectives, models (fixed-effects and random-effects), frequentist versus Bayesian approaches, and model validation. A checklist highlights key components of network meta-analysis, and substantial examples illustrate indirect treatment comparisons (both frequentist and Bayesian approaches) and network meta-analysis. A further section discusses eight key areas for future research.

摘要

循证医疗保健决策需要比较所有相关的竞争干预措施。在缺乏涉及所有相关治疗方法直接比较的随机对照试验的情况下,间接治疗比较和网络荟萃分析为明智选择最佳治疗方法提供了有用的证据。混合治疗比较是网络荟萃分析的一个特例,它结合了特定成对比较的直接证据和间接证据,从而比传统荟萃分析更能综合利用现有证据。国际药物经济学和结果研究学会间接治疗比较良好实践工作组的这份报告提供了关于进行网络荟萃分析的技术方面的指导(我们使用这个术语包括在证据网络背景下进行荟萃分析的大多数方法)。我们首先讨论了开发证据网络的策略。接下来,我们简要回顾了网络荟萃分析的假设。然后,我们重点关注数据的统计分析:目标、模型(固定效应和随机效应)、频率主义与贝叶斯方法以及模型验证。核对表突出了网络荟萃分析的关键组成部分,大量实例说明了间接治疗比较(频率主义和贝叶斯方法)和网络荟萃分析。进一步的部分讨论了未来研究的八个关键领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验