Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany.
J Physiol. 2011 Aug 1;589(Pt 15):3709-20. doi: 10.1113/jphysiol.2011.210666. Epub 2011 Jun 13.
Potassium-selective ion channels regulate cardiac and neuronal excitability by stabilizing the resting membrane potential and by modulating shape and frequency of action potentials. The delicate control of membrane voltage requires structural and functional diversity of K+ channel subunits expressed in a given cell. Here we reveal a previously unrecognized biological mechanism. Tissue-specific mRNA splicing regulates alternative translation initiation (ATI) of human K(2P)10.1 K+ background channels via recombination of 5 nucleotide motifs. ATI-dependent expression of full-length protein or truncated subunits initiated from two downstream start codons determines macroscopic current amplitudes and biophysical properties of hK(2P)10.1 channels. The interaction between hK(2P)10.1 mRNA splicing, translation and function increases K+ channel complexity and is expected to contribute to electrophysiological plasticity of excitable cells.
钾离子选择性通道通过稳定静息膜电位和调节动作电位的形状和频率来调节心脏和神经元的兴奋性。膜电压的精细控制需要在给定细胞中表达的 K+ 通道亚基的结构和功能多样性。在这里,我们揭示了一个以前未被认识到的生物学机制。组织特异性 mRNA 剪接通过重组 5 个核苷酸基序调节人 K(2P)10.1 K+背景通道的选择性翻译起始 (ATI)。ATI 依赖性全长蛋白或从两个下游起始密码子起始的截断亚基的表达决定了 hK(2P)10.1 通道的宏观电流幅度和生物物理特性。hK(2P)10.1 mRNA 剪接、翻译和功能之间的相互作用增加了 K+ 通道的复杂性,预计将有助于可兴奋细胞的电生理可塑性。