Department of Mathematics and State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, PR China.
IEEE Trans Pattern Anal Mach Intell. 2012 Feb;34(2):253-65. doi: 10.1109/TPAMI.2011.115.
Manifold learning algorithms seek to find a low-dimensional parameterization of high-dimensional data. They heavily rely on the notion of what can be considered as local, how accurately the manifold can be approximated locally, and, last but not least, how the local structures can be patched together to produce the global parameterization. In this paper, we develop algorithms that address two key issues in manifold learning: 1) the adaptive selection of the local neighborhood sizes when imposing a connectivity structure on the given set of high-dimensional data points and 2) the adaptive bias reduction in the local low-dimensional embedding by accounting for the variations in the curvature of the manifold as well as its interplay with the sampling density of the data set. We demonstrate the effectiveness of our methods for improving the performance of manifold learning algorithms using both synthetic and real-world data sets.
流形学习算法旨在找到高维数据的低维参数化。它们严重依赖于以下几个方面的概念:什么可以被认为是局部的,流形可以在局部多么精确地近似,以及最后但同样重要的是,如何将局部结构拼接在一起以产生全局参数化。在本文中,我们开发了一些算法,这些算法解决了流形学习中的两个关键问题:1)在给定的高维数据点集上施加连接结构时,自适应选择局部邻域大小,以及 2)通过考虑流形曲率的变化及其与数据集采样密度的相互作用,自适应减少局部低维嵌入中的偏差。我们使用合成数据集和真实世界数据集演示了我们的方法在提高流形学习算法性能方面的有效性。