Gadd C, Xing W, Nezhad M Mousavi, Shah A A
School of Engineering, University of Warwick, Coventry, CV47AL UK.
Transp Porous Media. 2019;126(1):39-77. doi: 10.1007/s11242-018-1065-7. Epub 2018 May 25.
In this paper, we develop a surrogate modelling approach for capturing the output field (e.g. the pressure head) from groundwater flow models involving a stochastic input field (e.g. the hydraulic conductivity). We use a Karhunen-Loève expansion for a log-normally distributed input field and apply manifold learning (local tangent space alignment) to perform Gaussian process Bayesian inference using Hamiltonian Monte Carlo in an abstract feature space, yielding outputs for arbitrary unseen inputs. We also develop a framework for forward uncertainty quantification in such problems, including analytical approximations of the mean of the marginalized distribution (with respect to the inputs). To sample from the distribution, we present Monte Carlo approach. Two examples are presented to demonstrate the accuracy of our approach: a Darcy flow model with contaminant transport in 2-d and a Richards equation model in 3-d.
在本文中,我们开发了一种代理建模方法,用于从涉及随机输入场(例如水力传导率)的地下水流模型中捕获输出场(例如压力水头)。我们对对数正态分布的输入场使用卡尔胡宁 - 勒夫展开,并应用流形学习(局部切空间对齐)在抽象特征空间中使用哈密顿蒙特卡罗进行高斯过程贝叶斯推断,从而为任意未见输入生成输出。我们还为此类问题开发了一个正向不确定性量化框架,包括边缘化分布均值(相对于输入)的解析近似。为了从分布中采样,我们提出了蒙特卡罗方法。给出了两个例子来证明我们方法的准确性:一个二维含污染物输运的达西流模型和一个三维的理查兹方程模型。