Suppr超能文献

构建用于诊断乳房 X 光片中肿块的集成系统。

Building an ensemble system for diagnosing masses in mammograms.

机构信息

College of Computing and Digital Media, DePaul University, Chicago, IL 60604, USA.

出版信息

Int J Comput Assist Radiol Surg. 2012 Mar;7(2):323-9. doi: 10.1007/s11548-011-0628-7. Epub 2011 Jun 14.

Abstract

PURPOSE

Classification of a suspicious mass (region of interest, ROI) in a mammogram as malignant or benign may be achieved using mass shape features. An ensemble system was built for this purpose and tested.

METHODS

Multiple contours were generated from a single ROI using various parameter settings of the image enhancement functions for the segmentation. For each segmented contour, the mass shape features were computed. For classification, the dataset was partitioned into four subsets based on the patient age (young/old) and the ROI size (large/small). We built an ensemble learning system consisting of four single classifiers, where each classifier is a specialist, trained specifically for one of the subsets. Those specialist classifiers are also an optimal classifier for the subset, selected from several candidate classifiers through preliminary experiment. In this scheme, the final diagnosis (malignant or benign) of an instance is the classification produced by the classifier trained for the subset to which the instance belongs.

RESULTS

The Digital Database for Screening Mammography (DDSM) from the University of South Florida was used to test the ensemble system for classification of masses, which achieved a 72% overall accuracy. This ensemble of specialist classifiers achieved better performance than single classification (56%).

CONCLUSION

An ensemble classifier for mammography-detected masses may provide superior performance to any single classifier in distinguishing benign from malignant cases.

摘要

目的

使用肿块形状特征可以对乳房 X 光片中的可疑肿块(感兴趣区域,ROI)进行恶性或良性分类。为此构建了一个集成系统并进行了测试。

方法

使用图像增强功能的各种参数设置从单个 ROI 生成多个轮廓用于分割。对于每个分割轮廓,计算肿块形状特征。对于分类,根据患者年龄(年轻/年长)和 ROI 大小(大/小)将数据集分为四个子集。我们构建了一个由四个单分类器组成的集成学习系统,每个分类器都是专门针对一个子集训练的专家。这些专家分类器也是通过初步实验从几个候选分类器中选择的用于子集的最佳分类器。在这种方案中,实例的最终诊断(恶性或良性)是为其所属子集训练的分类器产生的分类。

结果

使用南佛罗里达大学的数字筛查乳房 X 光数据库(DDSM)测试了用于分类肿块的集成系统,该系统的总体准确率为 72%。这种专家分类器的集成比单一分类器(56%)的性能更好。

结论

用于乳房 X 光检测肿块的集成分类器在区分良性和恶性病例方面可能比任何单一分类器都具有更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验