Suppr超能文献

结合多种特征表示与AdaBoost集成学习以减少乳腺X线摄影中肿块计算机辅助检测的假阳性检测

Combining multiple feature representations and AdaBoost ensemble learning for reducing false-positive detections in computer-aided detection of masses on mammograms.

作者信息

Choi Jae Young, Kim Dae Hoe, Plataniotis Konstantinos N, Ro Yong Man

机构信息

Multimedia Lab, The Edward S Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3GA, Canada.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4394-7. doi: 10.1109/EMBC.2012.6346940.

Abstract

One of the drawbacks of current Computer-aided Detection (CADe) systems is a high number of false-positive (FP) detections, especially for detecting mass abnormalities. In a typical CADe system, classifier design is one of the key steps for determining FP detection rates. This paper presents the effective classifier ensemble system for tackling FP reduction problem in CADe. To construct ensemble consisting of correct classifiers while disagreeing with each other as much as possible, we develop a new ensemble construction solution that combines data resampling underpinning AdaBoost learning with the use of different feature representations. In addition, to cope with the limitation of weak classifiers in conventional AdaBoost, our method has an effective mechanism for tuning the level of weakness of base classifiers. Further, for combining multiple decision outputs of ensemble members, a weighted sum fusion strategy is used to maximize a complementary effect for correct classification. Comparative experiments have been conducted on benchmark mammogram dataset. Results show that the proposed classifier ensemble outperforms the best single classifier in terms of reducing the FP detections of masses.

摘要

当前计算机辅助检测(CADe)系统的缺点之一是假阳性(FP)检测数量众多,尤其是在检测肿块异常方面。在典型的CADe系统中,分类器设计是确定FP检测率的关键步骤之一。本文提出了一种有效的分类器集成系统,用于解决CADe中的FP减少问题。为了构建由正确的分类器组成且彼此尽可能不同的集成,我们开发了一种新的集成构建解决方案,该方案将基于AdaBoost学习的数据重采样与使用不同的特征表示相结合。此外,为了应对传统AdaBoost中弱分类器的局限性,我们的方法具有一种有效的机制来调整基分类器的弱点程度。此外,为了组合集成成员的多个决策输出,使用加权和融合策略来最大化正确分类的互补效应。已在基准乳房X光数据集上进行了对比实验。结果表明,所提出的分类器集成在减少肿块的FP检测方面优于最佳的单个分类器。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验