Suppr超能文献

阿根廷葡萄酒主要品种的指纹图谱:通过无机、有机和稳定同位素分析以及化学计量学进行风土差异区分。

Fingerprints for main varieties of argentinean wines: terroir differentiation by inorganic, organic, and stable isotopic analyses coupled to chemometrics.

机构信息

Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.

出版信息

J Agric Food Chem. 2011 Jul 27;59(14):7854-65. doi: 10.1021/jf2007419. Epub 2011 Jun 28.

Abstract

Our main goal was to investigate if robust chemical fingerprints could be developed for three Argentinean red wines based on organic, inorganic, and isotopic patterns, in relation to the regional soil composition. Soils and wines from three regions (Mendoza, San Juan, and Córdoba) and three varieties (Cabernet Sauvignon, Malbec, and Syrah) were collected. The phenolic profile was determined by HPLC-MS/MS and multielemental composition by ICP-MS; (87)Sr/(86)Sr and δ(13)C were determined by TIMS and IRMS, respectively. Chemometrics allowed robust differentiation between regions, wine varieties, and the same variety from different regions. Among phenolic compounds, resveratrol concentration was the most useful marker for wine differentiation, whereas Mg, K/Rb, Ca/Sr, and (87)Sr/(86)Sr were the main inorganic and isotopic parameters selected. Generalized Procrustes analysis (GPA) using two studied matrices (wine and soil) shows consensus between them and clear differences between studied areas. Finally, we applied a canonical correlation analysis, demonstrating significant correlation (r = 0.99; p < 0.001) between soil and wine composition. To our knowledge this is the first report combining independent variables, constructing a fingerprint including elemental composition, isotopic, and polyphenol patterns to differentiate wines, matching part of this fingerprint with the soil provenance.

摘要

我们的主要目标是研究是否可以基于有机、无机和同位素模式为三种阿根廷红葡萄酒开发强大的化学指纹图谱,以反映区域土壤组成。从三个地区(门多萨、圣胡安和科尔多瓦)和三个品种(赤霞珠、马尔贝克和西拉)采集了土壤和葡萄酒。通过 HPLC-MS/MS 确定了酚类物质的特征,通过 ICP-MS 确定了微量元素的组成;通过 TIMS 和 IRMS 分别测定了 (87)Sr/(86)Sr 和 δ(13)C。化学计量学允许对地区、葡萄酒品种以及来自不同地区的同一品种进行强大的区分。在酚类化合物中,白藜芦醇浓度是葡萄酒区分的最有用的标记物,而 Mg、K/Rb、Ca/Sr 和 (87)Sr/(86)Sr 是选择的主要无机和同位素参数。使用两个研究矩阵(葡萄酒和土壤)的广义 Procrustes 分析(GPA)显示它们之间存在一致性,并且研究区域之间存在明显差异。最后,我们进行了典型相关分析,表明土壤和葡萄酒成分之间存在显著相关性(r = 0.99;p < 0.001)。据我们所知,这是首次结合独立变量的报告,构建了一个包括元素组成、同位素和多酚模式的指纹图谱,以区分葡萄酒,部分指纹图谱与土壤起源相匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验