Suppr超能文献

利用表面增强激光解吸电离飞行时间质谱检测结核的新型血清生物标志物。

New serum biomarkers for detection of tuberculosis using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry.

机构信息

Institute of Cell Biology, Zhejiang University, Hangzhou, PR China.

出版信息

Clin Chem Lab Med. 2011 Oct;49(10):1727-33. doi: 10.1515/CCLM.2011.634. Epub 2011 Jun 14.

Abstract

BACKGROUND

New technologies for the early detection of tuberculosis (TB) are urgently needed. Pathological changes within an organ might be reflected in proteomic patterns in serum. The aim of the present study was to screen for the potential protein biomarkers in serum for the diagnosis of TB using proteomic fingerprint technology.

METHODS

Proteomic fingerprint technology combining protein chips with surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) was used to profile the serum proteins from 50 patients with TB, 25 patients with lung disease other than TB, and 25 healthy volunteers. The protein fingerprint expression of all the serum samples and the resulting profiles between TB and control groups were analyzed with the Biomarker Wizard system.

RESULTS

A total of 30 discriminating m/z peaks were detected that were related to TB (p<0.01). The model of biomarkers constructed by the Biomarker Patterns Software based on the three biomarkers (2024, 8007, and 8598 Da) generated excellent separation between the TB and control groups. The sensitivity was 84.0% and the specificity was 86.0%. Blind test data indicated a sensitivity of 80.0% and a specificity of 84.2%.

CONCLUSIONS

The data suggested a potential application of SELDI-TOF MS as an effective technology to profile serum proteome, and with pattern analysis, a diagnostic model comprising three potential biomarkers was indicated to differentiate people with TB and healthy controls rapidly and precisely.

摘要

背景

迫切需要用于结核病(TB)早期检测的新技术。器官内的病理变化可能反映在血清中的蛋白质组模式中。本研究旨在使用蛋白质组指纹技术筛选血清中用于诊断 TB 的潜在蛋白质生物标志物。

方法

使用蛋白质芯片与表面增强激光解吸/电离飞行时间质谱(SELDI-TOF MS)相结合的蛋白质组指纹技术对 50 例 TB 患者、25 例非 TB 肺病患者和 25 名健康志愿者的血清蛋白进行分析。使用 Biomarker Wizard 系统分析所有血清样本的蛋白质指纹表达和 TB 与对照组之间的结果谱。

结果

共检测到与 TB 相关的 30 个差异 m/z 峰(p<0.01)。基于三个生物标志物(2024、8007 和 8598 Da)构建的 Biomarker Patterns 软件模型在 TB 和对照组之间产生了出色的分离。敏感性为 84.0%,特异性为 86.0%。盲测数据表明敏感性为 80.0%,特异性为 84.2%。

结论

这些数据表明,SELDI-TOF MS 作为一种有效的血清蛋白质组分析技术具有潜在的应用价值,并且通过模式分析,可以构建一个包含三个潜在生物标志物的诊断模型,用于快速准确地区分 TB 患者和健康对照者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验