Suppr超能文献

无标记定量蛋白质组学鉴定区分肺结核和潜伏感染的新型血浆生物标志物。

Label-Free Quantitative Proteomics Identifies Novel Plasma Biomarkers for Distinguishing Pulmonary Tuberculosis and Latent Infection.

作者信息

Sun Huishan, Pan Liping, Jia Hongyan, Zhang Zhiguo, Gao Mengqiu, Huang Mailing, Wang Jinghui, Sun Qi, Wei Rongrong, Du Boping, Xing Aiying, Zhang Zongde

机构信息

Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.

Changping Tuberculosis Prevent and Control Institute of Beijing, Beijing, China.

出版信息

Front Microbiol. 2018 Jun 13;9:1267. doi: 10.3389/fmicb.2018.01267. eCollection 2018.

Abstract

The lack of effective differential diagnostic methods for active tuberculosis (TB) and latent infection (LTBI) is still an obstacle for TB control. Furthermore, the molecular mechanism behind the progression from LTBI to active TB has been not elucidated. Therefore, we performed label-free quantitative proteomics to identify plasma biomarkers for discriminating pulmonary TB (PTB) from LTBI. A total of 31 overlapping proteins with significant difference in expression level were identified in PTB patients ( = 15), compared with LTBI individuals ( = 15) and healthy controls (HCs, = 15). Eight differentially expressed proteins were verified using western blot analysis, which was 100% consistent with the proteomics results. Statistically significant differences of six proteins were further validated in the PTB group compared with the LTBI and HC groups in the training set ( = 240), using ELISA. Classification and regression tree (CART) analysis was employed to determine the ideal protein combination for discriminating PTB from LTBI and HC. A diagnostic model consisting of alpha-1-antichymotrypsin (ACT), alpha-1-acid glycoprotein 1 (AGP1), and E-cadherin (CDH1) was established and presented a sensitivity of 81.2% (69/85) and a specificity of 95.2% (80/84) in discriminating PTB from LTBI, and a sensitivity of 81.2% (69/85) and a specificity of 90.1% (64/81) in discriminating PTB from HCs. Additional validation was performed by evaluating the diagnostic model in blind testing set ( = 113), which yielded a sensitivity of 75.0% (21/28) and specificity of 96.1% (25/26) in PTB vs. LTBI, 75.0% (21/28) and 92.3% (24/26) in PTB vs. HCs, and 75.0% (21/28) and 81.8% (27/33) in PTB vs. lung cancer (LC), respectively. This study obtained the plasma proteomic profiles of different infection statuses, which contribute to a better understanding of the pathogenesis involved in the transition from latent infection to TB activation and provide new potential diagnostic biomarkers for distinguishing PTB and LTBI.

摘要

缺乏针对活动性肺结核(TB)和潜伏感染(LTBI)的有效鉴别诊断方法仍然是结核病控制的一个障碍。此外,LTBI进展为活动性TB背后的分子机制尚未阐明。因此,我们进行了无标记定量蛋白质组学研究,以鉴定用于区分肺结核(PTB)和LTBI的血浆生物标志物。与LTBI个体(n = 15)和健康对照(HCs,n = 15)相比,在PTB患者(n = 15)中总共鉴定出31种表达水平有显著差异的重叠蛋白。使用蛋白质印迹分析验证了8种差异表达蛋白,其结果与蛋白质组学结果100%一致。在训练集(n = 240)中,使用酶联免疫吸附测定(ELISA)进一步验证了PTB组与LTBI组和HC组相比6种蛋白的统计学显著差异。采用分类与回归树(CART)分析来确定区分PTB与LTBI和HC的理想蛋白质组合。建立了由α-1-抗糜蛋白酶(ACT)、α-1-酸性糖蛋白1(AGP1)和E-钙黏蛋白(CDH1)组成的诊断模型,在区分PTB与LTBI时灵敏度为81.2%(69/85),特异性为95.2%(80/84);在区分PTB与HCs时灵敏度为81.2%(69/85),特异性为90.1%(64/81)。通过在盲测集(n = 113)中评估诊断模型进行了额外验证,在PTB与LTBI的比较中灵敏度为75.0%(21/28),特异性为96.1%(25/26);在PTB与HCs的比较中灵敏度为75.0%(21/28),特异性为92.3%(24/26);在PTB与肺癌(LC)的比较中灵敏度为75.0%(21/28),特异性为81.8%(27/33)。本研究获得了不同感染状态的血浆蛋白质组图谱,这有助于更好地理解从潜伏感染到TB激活转变过程中的发病机制,并为区分PTB和LTBI提供了新的潜在诊断生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3368/6008387/fbec6c17d3c1/fmicb-09-01267-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验