Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.
Mol Pharm. 2011 Oct 3;8(5):1720-8. doi: 10.1021/mp200080h. Epub 2011 Jul 29.
The integration of pharmaceutical nanocarriers with phage display techniques is emerging as a new paradigm for targeted cancer nanomedicines. We explored the direct use of landscape phage fusion proteins for the self-assembly of phage-derived binding peptides to liposomes for cancer cell targeting. The primary purpose of this study was to elucidate the targeting mechanism with a particular emphasis on the relative contributions of the two motifs that make up the landscape phage fusion protein (a binding peptide and the phage pVIII coat protein) to the targeting efficiency. Using transmission electron microscopy and dynamic light scattering, we confirmed the formation of phage-liposomes. Using FACS analysis, fluorescence microscopy, and fluorescence photospectrometry, we found that liposomes modified with MCF-7-specific phage fusion proteins (MCF-7 binding peptide, DMPGTVLP, fused to the phage PVIII coat protein) provided a strong and specific association with target MCF-7 cancer cells but not with cocultured, nontarget cells including C166-GFP and NIH3T3. The substitution for the binding peptide fused to phage pVIII coat protein abolished the targeting specificity. The addition of free binding peptide, DMPGTVLP, competitively inhibited the interaction of MCF-7-specific phage-liposomes with target MCF-7 cells but showed no reduction of MCF-7-associated plain liposomes. The proteolysis of the binding peptide reduced MCF-7 cell-associated phage-liposomes in a proteinase K (PK) concentration-dependent manner with no effect on the binding of plain liposomes to MCF-7 cells. Overall, only the binding peptide motif was involved in the targeting specificity of phage-liposomes. The presence of phage pVIII coat protein did not interfere with the targeting efficiency.
将药物纳米载体与噬菌体展示技术相结合,正在成为靶向癌症纳米药物的新范例。我们探索了直接使用景观噬菌体融合蛋白将噬菌体衍生的结合肽自组装到脂质体上,用于癌细胞靶向。本研究的主要目的是阐明靶向机制,特别强调构成景观噬菌体融合蛋白的两个基序(一个结合肽和噬菌体 pVIII 外壳蛋白)对靶向效率的相对贡献。使用透射电子显微镜和动态光散射,我们证实了噬菌体-脂质体的形成。使用 FACS 分析、荧光显微镜和荧光分光光度法,我们发现用 MCF-7 特异性噬菌体融合蛋白(与噬菌体 PVIII 外壳蛋白融合的 MCF-7 结合肽 DMPGTVLP)修饰的脂质体与靶 MCF-7 癌细胞有很强的特异性结合,但与共培养的非靶细胞(包括 C166-GFP 和 NIH3T3)没有结合。融合到噬菌体 pVIII 外壳蛋白上的结合肽的取代消除了靶向特异性。游离结合肽 DMPGTVLP 的添加竞争性抑制了 MCF-7 特异性噬菌体-脂质体与靶 MCF-7 细胞的相互作用,但对 MCF-7 相关的普通脂质体没有减少。结合肽的蛋白水解以蛋白酶 K(PK)浓度依赖的方式降低 MCF-7 细胞相关的噬菌体-脂质体,而对普通脂质体与 MCF-7 细胞的结合没有影响。总体而言,只有结合肽基序参与了噬菌体-脂质体的靶向特异性。噬菌体 pVIII 外壳蛋白的存在不干扰靶向效率。