Department of Earth & Environmental Sciences, Rutgers University, Newark, New Jersey 07102, United States.
Environ Sci Technol. 2011 Aug 1;45(15):6366-72. doi: 10.1021/es2013038. Epub 2011 Jun 30.
Reaction of aqueous Mn(II) with hexagonal birnessite at pH 7.5 causes reductive transformation of birnessite into feitknechtite (β-Mn(III)OOH) and manganite (γ-Mn(III)OOH) through interfacial electron transfer from adsorbed Mn(II) to structural Mn(IV) atoms and arrangement of product Mn(III) into MnOOH, summarized by Mn(II) + Mn(IV)O(2) + 2 H(2)O → 2 Mn(III)OOH + 2 H(+). Feitknechtite is the initial transformation product, and subsequently converted into the more stable manganite polymorph during ongoing reaction with Mn(II). Feitknechtite production is observed at Mn(II) concentrations 2 orders of magnitude below thermodynamic thresholds, reflecting uncertainty in thermodynamic data of Mn-oxide minerals and/or specific interactions between Mn(II) and birnessite surface sites facilitating electron exchange. Under oxic conditions, feitknechtite formation through surface-catalyzed oxidation of Mn(II) by O(2) leads to additional Mn(II) removal from solution relative to anoxic systems. These results indicate that Mn(II) may be an important moderator of the reductive arm of Mn-oxide redox cycling, and suggest a controlling role of Mn(II) in regulating the solubility and speciation of phyllomanganate-reactive metal pollutants including Co, Ni, As, and Cr in geochemical environments.
在 pH 值为 7.5 的条件下,水合二价锰与六方纤锌矿反应会通过吸附在 Mn(II)上的电子向结构 Mn(IV)原子转移以及产物 Mn(III)排列成 MnOOH,从而导致纤锌矿被还原转化为水钠锰矿(β-Mn(III)OOH)和软锰矿(γ-Mn(III)OOH)。反应式总结为 Mn(II) + Mn(IV)O(2) + 2 H(2)O → 2 Mn(III)OOH + 2 H(+)。水钠锰矿是最初的转化产物,并且在与 Mn(II)的持续反应中会转化为更稳定的软锰矿多晶型物。在 Mn(II)浓度低于热力学阈值 2 个数量级的情况下观察到水钠锰矿的生成,这反映了 Mn-氧化物矿物的热力学数据存在不确定性,或者 Mn(II)与纤锌矿表面位点之间存在特定相互作用,促进了电子交换。在有氧条件下,通过 O(2)表面催化氧化 Mn(II)形成水钠锰矿会导致相对于缺氧体系从溶液中进一步去除 Mn(II)。这些结果表明 Mn(II)可能是 Mn-氧化物氧化还原循环还原臂的重要调节剂,并表明 Mn(II)在控制地球化学环境中与叶状锰酸盐反应的金属污染物(包括 Co、Ni、As 和 Cr)的溶解度和形态方面起着控制作用。