Suppr超能文献

锑酸盐控制了中性 pH 条件下锰(II)诱导的针铁矿转化。

Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH.

机构信息

Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia.

Department of Hydrology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95447 Bayreuth, Germany.

出版信息

Environ Sci Technol. 2021 Jul 20;55(14):9854-9863. doi: 10.1021/acs.est.1c00916. Epub 2021 Jul 6.

Abstract

Manganese (Mn) oxides, such as birnessite (δ-MnO), are ubiquitous mineral phases in soils and sediments that can interact strongly with antimony (Sb). The reaction between birnessite and aqueous Mn(II) can induce the formation of secondary Mn oxides. Here, we studied to what extent different loadings of antimonate (herein termed Sb(V)) sorbed to birnessite determine the products formed during Mn(II)-induced transformation (at pH 7.5) and corresponding changes in Sb behavior. In the presence of 10 mM Mn(II), low Sb(V) (10 μmol L) triggered the transformation of birnessite to a feitknechtite (β-Mn(III)OOH) intermediary phase within 1 day, which further transformed into manganite (γ-Mn(III)OOH) over 30 days. Medium and high concentrations of Sb(V) (200 and 600 μmol L, respectively) led to the formation of manganite, hausmannite (Mn(II)Mn(III)O), and groutite (αMn(III)OOH). The reaction of Mn(II) with birnessite enhanced Sb(V) removal compared to Mn(II)-free treatments. Antimony K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that heterovalent substitution of Sb(V) for Mn(III) occurred within the secondary Mn oxides, which formed via the Mn(II)-induced transformation of Sb(V)-sorbed birnessite. Overall, Sb(V) strongly influenced the products of the Mn(II)-induced transformation of birnessite, which in turn attenuated Sb mobility via incorporation of Sb(V) within the secondary Mn oxide phases.

摘要

锰(Mn)氧化物,如钠锰矿(δ-MnO),是土壤和沉积物中普遍存在的矿物相,可与锑(Sb)强烈相互作用。钠锰矿与水合 Mn(II)之间的反应可诱导次生 Mn 氧化物的形成。在这里,我们研究了不同负载量的锑酸盐(在此称为 Sb(V))被钠锰矿吸附的程度,确定了在 Mn(II)诱导的转化过程中(在 pH 值为 7.5 时)形成的产物,以及 Sb 行为的相应变化。在 10 mM Mn(II)的存在下,低浓度 Sb(V)(10 μmol L)在 1 天内触发了钠锰矿向针铁矿(β-Mn(III)OOH)中间相的转化,而在 30 天内进一步转化为软锰矿(γ-Mn(III)OOH)。中浓度和高浓度 Sb(V)(分别为 200 和 600 μmol L)导致形成软锰矿、黑锰矿(Mn(II)Mn(III)O)和钙锰矿(αMn(III)OOH)。与无 Mn(II)的处理相比,Mn(II)与钠锰矿的反应增强了 Sb(V)的去除。Sb K 边扩展 X 射线吸收精细结构(EXAFS)光谱表明,Sb(V)在次生 Mn 氧化物中发生了杂价取代 Mn(III),这是通过 Sb(V)吸附的钠锰矿的 Mn(II)诱导转化而形成的。总体而言,Sb(V)强烈影响了 Mn(II)诱导的钠锰矿转化的产物,进而通过将 Sb(V)掺入次生 Mn 氧化物相中,减弱了 Sb 的迁移性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验