Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Rockville, Maryland, USA.
Clin Pharmacol Ther. 2011 Aug;90(2):271-8. doi: 10.1038/clpt.2011.119. Epub 2011 Jun 15.
Current methods of statistical data mining are limited in their ability to facilitate the identification of patterns of potential clinical interest from spontaneous reporting systems of medical product adverse events (AEs). Network analysis (NA) allows for simultaneous representation of complex connections among the key elements of such a system. The Vaccine Adverse Event Reporting System (VAERS) can be represented as a network of 6,428 nodes (74 vaccines and 6,354 AEs) with more than 1.4 million interlinkages. VAERS has the characteristics of a "scale-free" network, with certain vaccines and AEs acting as "hubs" in the network. Known safety signals were visualized using NA methods, including hub identification. NA offers a complementary approach to current statistical data-mining techniques for visualizing multidimensional patterns, providing a structural framework for evaluating AE data.
目前的统计数据分析方法在从医疗产品不良事件(AE)自发报告系统中识别潜在临床关注模式的能力方面存在局限性。网络分析(NA)允许同时表示系统关键要素之间的复杂连接。疫苗不良事件报告系统(VAERS)可以表示为一个 6428 个节点(74 种疫苗和 6354 种 AE)的网络,其中有超过 140 万个相互连接。VAERS 具有“无标度”网络的特征,某些疫苗和 AE 作为网络中的“枢纽”。使用 NA 方法可视化了已知的安全信号,包括枢纽识别。NA 为当前的统计数据分析技术提供了一种补充方法,用于可视化多维模式,为评估 AE 数据提供了一个结构框架。