Suppr超能文献

应用自然语言处理和网络分析技术于上市后报告,以评估与剂量相关的抗胸腺细胞球蛋白安全模式。

Application of Natural Language Processing and Network Analysis Techniques to Post-market Reports for the Evaluation of Dose-related Anti-Thymocyte Globulin Safety Patterns.

作者信息

Botsis Taxiarchis, Foster Matthew, Arya Nina, Kreimeyer Kory, Pandey Abhishek, Arya Deepa

机构信息

Taxiarchis Botsis, Office of Biostatistics & Epidemiology | Center for Biologics Evaluation and Research | FDA, 10903 New Hampshire Ave, WO71 - 1232, Silver Spring, MD 20993-0002, E-mail:

出版信息

Appl Clin Inform. 2017 Apr 26;8(2):396-411. doi: 10.4338/ACI-2016-10-RA-0169.

Abstract

OBJECTIVE

To evaluate the feasibility of automated dose and adverse event information retrieval in supporting the identification of safety patterns.

METHODS

We extracted all rabbit Anti-Thymocyte Globulin (rATG) reports submitted to the United States Food and Drug Administration Adverse Event Reporting System (FAERS) from the product's initial licensure in April 16, 1984 through February 8, 2016. We processed the narratives using the Medication Extraction (MedEx) and the Event-based Text-mining of Health Electronic Records (ETHER) systems and retrieved the appropriate medication, clinical, and temporal information. When necessary, the extracted information was manually curated. This process resulted in a high quality dataset that was analyzed with the Pattern-based and Advanced Network Analyzer for Clinical Evaluation and Assessment (PANACEA) to explore the association of rATG dosing with post-transplant lymphoproliferative disorder (PTLD).

RESULTS

Although manual curation was necessary to improve the data quality, MedEx and ETHER supported the extraction of the appropriate information. We created a final dataset of 1,380 cases with complete information for rATG dosing and date of administration. Analysis in PANACEA found that PTLD was associated with cumulative doses of rATG >8 mg/kg, even in periods where most of the submissions to FAERS reported low doses of rATG.

CONCLUSION

We demonstrated the feasibility of investigating a dose-related safety pattern for a particular product in FAERS using a set of automated tools.

摘要

目的

评估自动检索剂量和不良事件信息以支持识别安全模式的可行性。

方法

我们提取了1984年4月16日产品首次获批至2016年2月8日期间提交给美国食品药品监督管理局不良事件报告系统(FAERS)的所有兔抗胸腺细胞球蛋白(rATG)报告。我们使用药物提取(MedEx)和基于事件的健康电子记录文本挖掘(ETHER)系统处理叙述内容,并检索适当的药物、临床和时间信息。必要时,对提取的信息进行人工整理。这一过程产生了一个高质量的数据集,使用基于模式的临床评估与评估高级网络分析仪(PANACEA)进行分析,以探讨rATG剂量与移植后淋巴细胞增生性疾病(PTLD)的关联。

结果

尽管需要人工整理来提高数据质量,但MedEx和ETHER支持提取适当的信息。我们创建了一个包含1380例病例的最终数据集,其中包含rATG剂量和给药日期的完整信息。PANACEA分析发现,PTLD与rATG累积剂量>8mg/kg相关,即使在向FAERS提交的大多数报告中rATG剂量较低的时期也是如此。

结论

我们证明了使用一组自动化工具在FAERS中研究特定产品与剂量相关的安全模式的可行性。

相似文献

2
Decision support environment for medical product safety surveillance.
J Biomed Inform. 2016 Dec;64:354-362. doi: 10.1016/j.jbi.2016.07.023. Epub 2016 Jul 28.
4
Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology.
J Biomed Inform. 2018 Jul;83:73-86. doi: 10.1016/j.jbi.2018.05.019. Epub 2018 Jun 1.
10
Vaccine adverse event text mining system for extracting features from vaccine safety reports.
J Am Med Inform Assoc. 2012 Nov-Dec;19(6):1011-8. doi: 10.1136/amiajnl-2012-000881. Epub 2012 Aug 25.

引用本文的文献

1
RxNorm for drug name normalization: a case study of prescription opioids in the FDA adverse events reporting system.
Front Bioinform. 2024 Jan 5;3:1328613. doi: 10.3389/fbinf.2023.1328613. eCollection 2023.
2
A systematic analysis and data mining of opioid-related adverse events submitted to the FAERS database.
Exp Biol Med (Maywood). 2023 Nov;248(21):1944-1951. doi: 10.1177/15353702231211860. Epub 2023 Dec 30.

本文引用的文献

1
Decision support environment for medical product safety surveillance.
J Biomed Inform. 2016 Dec;64:354-362. doi: 10.1016/j.jbi.2016.07.023. Epub 2016 Jul 28.
3
Use of data mining at the Food and Drug Administration.
J Am Med Inform Assoc. 2016 Mar;23(2):428-34. doi: 10.1093/jamia/ocv063. Epub 2015 Jul 23.
4
Extracting and standardizing medication information in clinical text - the MedEx-UIMA system.
AMIA Jt Summits Transl Sci Proc. 2014 Apr 7;2014:37-42. eCollection 2014.
6
Identifying Similar Cases in Document Networks Using Cross-Reference Structures.
IEEE J Biomed Health Inform. 2015 Nov;19(6):1906-17. doi: 10.1109/JBHI.2014.2345873. Epub 2014 Aug 7.
7
Vaccine adverse event text mining system for extracting features from vaccine safety reports.
J Am Med Inform Assoc. 2012 Nov-Dec;19(6):1011-8. doi: 10.1136/amiajnl-2012-000881. Epub 2012 Aug 25.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验