Suppr超能文献

采用面向多样性的优先级排序方法来提高支架发现的速度。

Enhancing the rate of scaffold discovery with diversity-oriented prioritization.

机构信息

Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.

出版信息

Bioinformatics. 2011 Aug 15;27(16):2271-8. doi: 10.1093/bioinformatics/btr369. Epub 2011 Jun 17.

Abstract

MOTIVATION

In high-throughput screens (HTS) of small molecules for activity in an in vitro assay, it is common to search for active scaffolds, with at least one example successfully confirmed as an active. The number of active scaffolds better reflects the success of the screen than the number of active molecules. Many existing algorithms for deciding which hits should be sent for confirmatory testing neglect this concern.

RESULTS

We derived a new extension of a recently proposed economic framework, diversity-oriented prioritization (DOP), that aims-by changing which hits are sent for confirmatory testing-to maximize the number of scaffolds with at least one confirmed active. In both retrospective and prospective experiments, DOP accurately predicted the number of scaffold discoveries in a batch of confirmatory experiments, improved the rate of scaffold discovery by 8-17%, and was surprisingly robust to the size of the confirmatory test batches. As an extension of our previously reported economic framework, DOP can be used to decide the optimal number of hits to send for confirmatory testing by iteratively computing the cost of discovering an additional scaffold, the marginal cost of discovery.

CONTACT

swamidass@wustl.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在体外测定中小分子活性的高通量筛选(HTS)中,通常会寻找有活性的支架,其中至少有一个成功确认为有活性。有活性的支架数量比有活性的分子数量更能反映筛选的成功。许多现有的用于决定哪些命中物应进行确证性测试的算法忽略了这一关注点。

结果

我们推导出了最近提出的经济框架多样性导向优先级化(DOP)的一个新扩展,该扩展旨在通过改变发送进行确证性测试的命中物来最大化至少有一个确认活性的支架数量。在回顾性和前瞻性实验中,DOP 准确地预测了一批确证性实验中的支架发现数量,将支架发现率提高了 8-17%,并且对确证性测试批次的大小具有惊人的鲁棒性。作为我们之前报道的经济框架的扩展,DOP 可以通过迭代计算发现额外支架的成本,即发现的边际成本,来决定发送进行确证性测试的最佳命中物数量。

联系方式

swamidass@wustl.edu

补充信息

补充数据可在“Bioinformatics”在线获取。

相似文献

2
Utility-aware screening with clique-oriented prioritization.基于团优先化的效用感知筛选
J Chem Inf Model. 2012 Jan 23;52(1):29-37. doi: 10.1021/ci2003285. Epub 2011 Dec 20.
5
Managing missing measurements in small-molecule screens.小分子筛选中缺失测量值的管理。
J Comput Aided Mol Des. 2013 May;27(5):469-78. doi: 10.1007/s10822-013-9642-x. Epub 2013 Apr 13.
6
Scaffold network generator: a tool for mining molecular structures.支架网络生成器:一种挖掘分子结构的工具。
Bioinformatics. 2013 Oct 15;29(20):2655-6. doi: 10.1093/bioinformatics/btt448. Epub 2013 Aug 5.

引用本文的文献

本文引用的文献

5
Discovery of power-laws in chemical space.化学空间中幂律的发现。
J Chem Inf Model. 2008 Jun;48(6):1138-51. doi: 10.1021/ci700353m. Epub 2008 Jun 4.
6
Managing bias in ROC curves.处理ROC曲线中的偏倚
J Comput Aided Mol Des. 2008 Mar-Apr;22(3-4):141-6. doi: 10.1007/s10822-008-9181-z. Epub 2008 Feb 7.
7
What do we know and when do we know it?我们知道什么,以及我们何时知道?
J Comput Aided Mol Des. 2008 Mar-Apr;22(3-4):239-55. doi: 10.1007/s10822-008-9170-2. Epub 2008 Feb 6.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验